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ABSTRACT The rapid digitalization of the mobility and transport ecosystem generates an escalating
volume of data as a by-product, presenting an invaluable resource for various stakeholders. This mobility
and transport data can fuel data-driven services, ushering in a new era of possibilities. To facilitate the
development of these digitalized mobility services, we propose a novel conceptual framework for Mobility
Data Science. Our approach seamlessly merges two distinct research domains: 1) mobility and transport
science, and 2) data science. Mobility Data Science serves as a connective tissue, bridging the digital layers
of physical mobility and transport artefacts such as people, goods, transport means, and infrastructure with
the digital layer of data-driven services. In this paper, we introduce our conceptual framework, shaped
by insights from domain experts deeply immersed in the mobility and transport ecosystem. We present a
practical application of our framework in guiding the implementation of a driving style detection service,
demonstrating its effectiveness in translating theoretical concepts into real-world solutions. Furthermore,
we validate our framework’s versatility by applying it to various real-world cases from the scientific
literature. Our demonstration showcases the framework’s adaptability and its potential to unlock value by
harnessing mobility and transport data, enabling the creation of impactful data-driven services. We believe
our framework offers valuable insights for researchers and practitioners: It provides a structured approach to
comprehend and leverage the potential of mobility and transport data for developing impactful data-driven
services, which we refer to as digitalized mobility services.

INDEX TERMS Mobility data science, mobility and transport, data science, digitalized mobility services,
digitalization, digital innovation, conceptual framework.

I. INTRODUCTION

The evolution of the mobility and transport landscape is
marked by transformative changes, giving rise to what we
term as Mobility Data Science. This emerging approach is
shaped by a confluence of factors, notably the swift progress

before providing an in-depth exploration of Mobility Data
Science in Section II.

A. DIGITALIZATION AND PHYSICAL MOBILITY

in technology, accelerated innovation, the ubiquity of digital
technologies, the surge in available mobility and transport
data, and the establishment of interconnected mobility and
transport data ecosystems (cf. e.g., [1], [2], [3], [4]). In the
following subsections, we delve into these developments,
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Rapid technological advancement and the pursuit of innova-
tion are driving society more and more towards digitalization.
Digital technology, as highlighted by various researchers [1],
[4], [5], [6], holds immense potential for innovation across
all fields. A key aspect of this potential lies in the cre-
ation of hybrid product architectures, combining the modular
architecture of the physical product with layered digital
components. These digital layers extend the capabilities
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of physical products through sensors and software-based
functionalities, paving the way for new business models
that enhance the interconnectedness of products, processes,
and services [7]. Furthermore, technology-based innovation
contributes to a shift in entrepreneurial culture [3]. While
attaining the transformative impact of digital technologies
requires time, effort, and determination [8], these tech-
nologies hold the potential to revolutionize mobility and
transportation across all facets—actors, products, services,
and business models [9], [10].

In the realm of mobility and transport, traditionally focused
on physical movement of people and goods, a notable shift
is occurring as physical assets such as passenger cars,
trucks, buses, and trains become enriched with a digital
layer. This digitization wave facilitates improved connec-
tivity, user interaction, safety, and comfort. A fundamental
change brought about by digital technologies is the evolving
concept of ownership, with easy access to products increas-
ingly perceived as the new form of ownership [11]. This
shift is further emphasized by a decreasing willingness to pay
solely for the potential use of a product and an increasing
willingness to pay for the convenient fulfillment of a specific
need.

The digital layer serves as a crucial instrument in enhanc-
ing access to physical mobility assets and improving their
efficiency. This is exemplified by the extended utilization of
passenger cars, which can now be in use for up to eight hours
or even more per day, a significant contrast to the limited
usage patterns of traditional car owners who, on average,
drive 1-2 hours per day, if at all [12]. The conventional con-
cept of physical ownership, often associated with substantial
resource waste, such as parking spaces occupied by seldom-
used vehicles, is being redefined.

The significance of digital technologies becomes even
more evident when examining developments over the past
decade (cf. [1], [13]). During this period, digital technology
has been a catalyst for a diverse array of solutions, includ-
ing digital extensions of physical products, exemplified by
innovations like vehicle information systems [14] and auto-
mated driving systems [15]. These advancements have not
only introduced new functionalities but have also played a
pivotal role in shaping novel product architectures. Digital
technologies have given rise to hybrid product architectures,
combining the modular structure of physical products with
the multi-layered architecture of digital technology. This syn-
thesis allows the extension of the functionality of physical
products through software-based functions [1], [11]. The
transformative impact is far-reaching, ushering in a new era
of product design and capabilities.

Furthermore, the influence of digital technologies extends
to the development of various mobility services, benefiting
a range of mobility actors. Examples include car sharing
services like ShareNow from BMW Group and Daimler
AG, ride-on-demand platforms like Uber, ride-hailing ser-
vices such as RideConnect, and the advent of self-driving
taxis exemplified by Waymo from Google. These examples
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underscore the undeniable impact of digital technologies
on the mobility and transport landscape, emphasizing their
indispensable role in shaping the present and future of these
domains.

B. MOBILITY DATA AND DATA ECOSYSTEMS

The influence of digital technologies is intricately linked to
the accessibility and utilization of data. Within the digital
mobility ecosystem, data has emerged as a pivotal compo-
nent [2], [16]. It stands as a fundamental resource, playing
a vital role in powering and optimizing digitalized mobil-
ity services [17]. This underscores the transformative role
data assumes in shaping the landscape of modern digitalized
mobility, where its availability not only drives technological
advancements but also serves as a foundational resource for
innovative and efficient mobility solutions.

Several sources within the mobility and transport ecosys-
tem generate data: First, data is generated throughout the
whole lifecycle of physical and digital mobility assets, i.e.,
in the design, manufacturing, operation, and service phases.
In the design phase, physical transport assets such as passen-
ger cars or trucks are designed and therefore engineering data
such as computer aided design (CAD), simulation results,
or test data are generated by vehicle engineers in a collabora-
tive development effort. In the manufacturing phase, data is
generated by humans and machines that assemble the product
from parts. In the operation phase, data is generated by sen-
sors installed in vehicles to ensure the functionality and safety
of vehicle operation [18]. Moreover, data processing systems
integrated into users’ mobile devices, such as smartphones or
smartwatches, contribute to data generation by capturing user
interactions and vehicle-related information [18], [19]. In the
maintenance phase, additional data, such as diagnostic fault
codes and performed repairs, is gathered, facilitating services
like predictive maintenance [20].

Furthermore, the mobility and transport sector is experi-
encing a progressive shift towards increased interconnected-
ness, wherein various transport modes actively gather and
exchange extensive datasets. Within emerging mobility and
transport ecosystems [2], [16], an expanding network of
mobility and transport artefacts, such as cars, trains, and
the road infrastructure, engage in communication with data
processing centers. These centers transmit a diverse array of
information, including operational identifiers, location data,
and various other mobility, traffic, and infrastructure-related
datasets. This trend has given rise to a myriad of services
that leverage such data, often in conjunction with additional
contextual information.

A notable illustration of these services can be found in
the insurance industry, where drivers now can pay premi-
ums based on their individual driving behavior rather than
a fixed rate [21]. Another instance is evident in in-vehicle
navigation services, which not only provide users with route
guidance but also furnish real-time traffic information. Addi-
tionally, the transportation infrastructure actively collects
data on traffic movements, utilizing roadside units (RSUs)
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and static sensors on roadways. This data serves as a foun-
dation for services supporting short-term traffic planning
processes in newsrooms and long-term infrastructure plan-
ning by providers.

Digital technologies also play a pivotal role in deliv-
ering services that enhance mobility for individuals with
disabilities [22], promote inclusive mobility [23], and address
transportation poverty [24].

Although data capturing has become ubiquitous and is
actively utilized to facilitate diverse services [11], [17], it is
notable that substantial volumes of data are generated merely
as by-products of transport artefacts or through the use of
mobility services, frequently remaining underutilized and
unprocessed [10]. As a result, there arises a pressing need
for novel conceptual approaches to fully unlock the potential
value embedded within the vast datasets generated within the
mobility and transport ecosystem. Addressing this challenge
requires innovative strategies that go beyond conventional
data utilization, aiming to extract meaningful insights and
capitalize on the untapped potential within this rich source
of information.

C. A DISCOURSE ON SMART SERVICE SYSTEMS

In accordance with service science, a service is conceptual-
ized as a system comprising interacting and interdependent
elements, encompassing individuals, technology, and busi-
ness activities, all oriented outward to attain and sustain a
competitive advantage [25]. In this domain, the evolution
of physical products that are digitally networked with other
products and information systems, so-called smart products,
is being explored as smart service systems [26]. In this con-
text, the term ‘digitalized’ is being supplanted by ‘smart,
emphasizing the ‘embedded intelligence’ within these new
physical products. A smart service system encompasses ser-
vice providers, consumers, and the smart product itself,
serving as boundary objects that facilitate these services.

Over time, service systems have evolved towards greater
intelligence, leveraging Big Data analytics to generate infor-
mation and automate operations, thereby creating enhanced
value for individuals [27]. Another prevalent concept in this
domain is that of product-service systems [28], representing
an integrated blend of products and services wherein cus-
tomers pay for the utilization of assets rather than outright
ownership. Notably, these product-service systems need not
necessarily incorporate digital technologies, highlighting the
diversity in their implementation and the flexibility in adapt-
ing to varying contexts.

While we lean towards the terminology ‘digital’ over
‘smart’ to resonate with the discourse within the digital
transformation community, it is essential to acknowledge the
shared principles that underlie both domains. Smart service
systems emphasize intelligent and adaptive solutions, often
harnessing technologies such as artificial intelligence and the
Internet of Things. In the realm of Mobility Data Science, our
focus underscores a commitment to employing data-driven
methodologies for the development and enhancement of
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digitalized mobility services. This approach aligns with the
broader goals of leveraging advanced technologies to opti-
mize and transform the landscape of mobility services in a
digitally connected world.

By synthesizing insights from the literature on smart ser-
vice systems with our emphasis on Mobility Data Science,
our aim is to enhance our understanding of how digital
technologies can revolutionize the landscape of mobility and
transportation. This holistic perspective enables us to lever-
age the principles inherent in smart service systems while
tailoring our approach to address the distinct challenges and
opportunities within the digitalized mobility domain. In doing
so, we strive to develop a nuanced and effective framework
that aligns seamlessly with the evolving dynamics of the
mobility and transportation sector in the digital era.

In the realm of service science, a digitalized mobility
service refers to an advanced and technologically integrated
solution within the mobility sector. This service employs
digital technologies, data analytics, and connectivity to trans-
form traditional modes of transportation into dynamic and
intelligent systems. Digitalized mobility services leverage
information and communication technologies to enhance the
efficiency, accessibility, and user experience of transportation
offerings. This integration extends beyond the mere digitiza-
tion of processes, involving the comprehensive application
of digital technologies to create a seamless, interconnected,
and data-driven mobility ecosystem. The aim is to optimize
service delivery, improve decision-making processes, and
cater to the evolving needs of users and stakeholders within
the broader service framework.

In this context, we want to make a distinction between the
terms “‘digitized” and ‘“‘digitalized.” While these terms are
often used interchangeably in the literature [59], we specifi-
cally refer to “digitalized mobility services” (not “digitized
mobility services’). This distinction emphasizes a type of
service that not only involves the conversion of analog infor-
mation into digital form but, more importantly, fulfills a clear
need within the realm of mobility and transport, utilizing
digital technologies to enhance and optimize services.

D. MOBILITY DATA SCIENCE-A NOVEL APPROACH

The effective utilization of generated mobility and transport
data remains a formidable challenge, necessitating a fresh
approach for resolution, which we term Mobility Data Sci-
ence. The domain of mobility and transportation presents
distinctive features that warrant in-depth exploration and
discussion. These unique characteristics contribute to the
complexity of handling and deriving meaningful insights
from the wealth of data generated within this sector. In the
pursuit of overcoming these challenges, Mobility Data Sci-
ence emerges as a specialized discipline that seeks to harness
advanced analytical techniques, computational methods, and
domain-specific expertise to unlock the full potential of
mobility and transport data. In our exploration, we aim to
delve into these distinctive features, shedding light on the
nuances that make Mobility Data Science a crucial catalyst
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for transformative advancements within the realm of mobility
and transportation.

Mobility and transport constitute a complex application
domain characterized by a specialized language that experts
employ, posing challenges for outsiders to comprehend and
interpret. Gaining proficiency in this domain demands a con-
siderable investment of time. Adding to the complexity is the
diverse array of data formats, many of which are proprietary
and pose challenges for processing and analysis, as high-
lighted by various experts [29].

Capturing mobility and transport data can be very chal-
lenging. For instance, access to crucial data sources like the
vehicle CAN bus (Vehicle Controller Area Network) is often
restricted to product and embedded system manufacturers
due to security considerations. This limitation frequently
necessitates additional information to decipher hexadecimal
formatted data from the CAN bus. Vehicles typically incor-
porate multiple bus systems of varying types (CAN, LIN,
FlexRay, etc.) serving different purposes such as diagnostics,
multimedia, and engine control. These systems process data
from an assortment of sensors, contributing to the already
substantial and exponentially growing volume of data within
the mobility and transport ecosystem [10]. This surge in
data is particularly evident in high-tech applications inte-
grating vehicle sensor technology, including driver assistance
systems, automated driving, and in-cabin monitoring. The
enormity and intricacy of data in this domain underscore
the critical role of specialized expertise and advanced data
processing techniques in extracting meaningful insights and
navigating the challenges. Addressing environmental and
social challenges encounters persistent issues related to data
availability, as noted in various studies [30], [31]. A criti-
cal social concern is the concept of mobility data injustice,
where individuals who do not actively generate data find
themselves excluded from data collection efforts. This exclu-
sion results in mobility and transportation services that may
not cater to their specific needs, contributing to heightened
inequalities [32].

Moreover, accessibility disparities between rural and
(peri-)urban areas persist, impacting the availability and
accessibility of existing mobility solutions, such as public
transportation or sharing concepts [33]. These challenges are
particularly pronounced in rural areas, despite the potential
benefits they could bring to disadvantaged populations [34].
A commitment to inclusive mobility and transportation for
all should also extend to individuals with impairments,
a principle underscored in Article 20 of the United Nations’
“Convention On The Rights Of Persons With Disabilities.”

In the context of environmental challenges, there exists
a considerable degree of uncertainty surrounding mobility
and transport. While the undeniable impact of these sectors
on the Earth’s climate is acknowledged [35], the inherent
complexity of this domain introduces uncertainty regard-
ing the precise environmental implications. This uncertainty
spans issues such as the accurate calculation of environmental
impact, especially concerning the transition between different
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transport modes and diverse behavioral patterns [37], or the
use of recycled materials like asphalt pavement [38]. These
challenges emphasize the need for comprehensive, inclusive,
and environmentally conscious strategies in the evolution of
mobility and transportation systems.

Furthermore, the mobility and transport sectors are under-
going a transformation into intricate ecosystems, as observed
in various studies [10], [39]. This evolution necessitates
collaboration among numerous stakeholders to facilitate the
emergence of novel products and services. Notably, the
landscape is marked by the proliferation of proprietary infor-
mation systems, and a standardized framework for data
access and sharing is yet to be established. The existence of
numerous influential players in the ecosystem, such as car
manufacturers or Tier-1 suppliers, poses challenges in con-
vincing them to provide access to critical vehicle operation
data.

Finally, the mobility and transport domain has witnessed
the emergence of numerous start-ups that offer compelling
data-driven services [18], [40], particularly in the realm of
connected vehicles. These start-ups often find themselves
in competition with traditional players, contributing to a
dynamic and competitive landscape within the sector. This
complex interplay among established entities and emerging
innovators underscores the need for effective collaboration
frameworks, standardized data access protocols, and strategic
approaches to foster innovation while maintaining a balance
between traditional and novel players.

Il. A BETTER UNDERSTANDING OF MOBILITY DATA
SCIENCE

In an initial attempt to better understand Mobility Data Sci-
ence, it can be characterized as the convergence or synergistic
fusion of two burgeoning research domains: Data Science
and Mobility and Transport. Both of these fields are currently
experiencing significant growth and stand to benefit substan-
tially from a collaborative and efficient integration.

Data Science, as a discipline, is primarily focused on
the development of novel approaches and methodologies,
validated through real-world data. Mobility and Transport
contribute by providing data scientists with the essential vol-
ume, variety, and veracity of data originating from diverse
mobility assets and services. Given the central role of mobil-
ity and transport in society, they play a pivotal role in
achieving the United Nations’ sustainable development goals.

The mobility and transport domain actively aspires to
enhance sustainability across social, environmental, and eco-
nomic dimensions, aligning with the triple bottom line (3BL)
framework [41]. Data Science emerges as a valuable ally
in this transformation process, offering crucial support to
advance sustainability goals through the development and
optimization of digitalized mobility services. The collabora-
tion between these two domains holds the potential to drive
innovations that not only improve the efficiency and effective-
ness of mobility solutions but also contribute significantly to
broader societal and environmental objectives.
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In recent years, Data Science has emerged as a transforma-
tive discipline that translates raw data into valuable insights
for individuals, organizations, and society at large [42]. The
term Data Science encapsulates the systematic study of data,
often emphasizing the analysis of extensive amounts of struc-
tured and unstructured data, including measurements, texts,
images, and videos [43], [44]. According to Waller and
Fawcett [45] Data Science is characterized by the applica-
tion of both quantitative and qualitative methods to address
pertinent problems and predict outcomes, acknowledging that
expertise and analysis are inherently intertwined.

At a fundamental level, Data Science comprises a set of
principles guiding the extraction of information and knowl-
edge from data. However, a proficient data scientist must also
possess the ability to approach significant business challenges
from a data-centric perspective [46]. The typical workflow of
a data scientist involves well-defined practices for extracting
information and knowledge, facilitating data-driven decision-
making. This process involves stages such as data acquisition,
data preprocessing, data transformation, data exploration,
data modeling, model evaluation, and finally, data visual-
ization and the application of results. While these stages
are not strictly linear, they undergo continuous evaluation,
regression, and improvement.

A notable aspect of Data Science is the diverse types of
data it deals with, presented in various formats and structures.
Consequently, data scientists invest a significant portion of
their problem-solving efforts in data preparation and pro-
cessing, recognizing the critical role this phase plays in
ensuring the accuracy and relevance of subsequent analyses
and insights [46].

Mobility and Transport present a diverse array of chal-
lenges, and Data Science emerges as a crucial tool for
addressing them. These challenges span a spectrum from
understanding travel behavior and human mobility at a
broader scale [47], analyzing bus transit and passenger
travel behavior [48], detecting driver behavior [49], monitor-
ing driver activities, and addressing distractions [50], [51],
to optimizing resource-efficient mobility solutions.

Moreover, the mobility and transport sector is currently
undergoing a significant transformation, reshaping traditional
business models and products and services. The concept
of “mobility-as-a-service” (MaaS) exemplifies this shift,
emphasizing the purchase of mobility services tailored to
consumers’ needs rather than the acquisition of physical
mobility assets [52]. These services are typically facilitated
through digital platforms, websites or mobile applications,
providing users with comprehensive access to trip planning,
ticketing, payment, and real-time information [53].

Furthermore, research has given rise to data-driven appli-
cations that enhance mobility and transport infrastructure.
Examples include the use of mobile sensors or smartphones
for detecting potholes and road surface damage [54], [55],
[56], as well as applications for identifying pavement patch
defects [57] and determining travel conditions using data
from drivers’ devices [58]. These innovations highlight the
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transformative potential of Data Science in shaping the future
of mobility and transport, fostering efficiency, sustainability,
and a seamless user experience.

In the context of the various applications and services
discussed, the application of Data Science methods plays a
pivotal role in their development and operation. Consider-
ing the significant transformations in mobility and transport
over the past decade, such as technological advancements,
digitalization, and the formation of mobility and transport
ecosystems, wedefine Mobility Data Science as the practical
implementation of Data Science within the mobility and
transport domain.

Mobility Data Science represents Data Science in action
within the mobility and transport domain. It involves the
application of tailored methods to enable the development of
novel, digitalized mobility services. These specialized meth-
ods, referred to as Mobility Data Science methods, form a
systematic approach. This approach utilizes the data collected
within the mobility and transport system by applying a data
science process. The ultimate goal of Mobility Data Science
is to facilitate the emergence of digitized mobility services
characterized by their data-driven nature, providing added
value for users and contributing to the ongoing evolution of
the mobility and transport landscape.

These methods intricately process data derived from var-
ious mobility and transportation artefacts, including people
and goods to be transported, transportation assets like cars or
trains, and the overall transportation infrastructure. This data
processing, in turn, serves as the catalyst for the development
of innovative, digitalized mobility services.

To visually capture the essence of Mobility Data Science,
Figure 1 outlines its scope. It represents the application
of Data Science methods, establishing bidirectional links
between the digital layers of mobility and transportation
artefacts, such as vehicles or transport infrastructure, and the
digital layer of digitalized mobility services.

R Digitalized Mobility Services =<

Digital Layer

\
1 ]
1 1
[} [
| Scope of = :
' Mobility (Mobility) :
| Data Data Science :
I Science Methods :
1
1 I
I I
I Mobility & Digital Layer :
N Transport L

T Artefacts Physical Layer 2

FIGURE 1. Scope of mobility data science: linking the digital layers.

IlIl. A CONCEPTUAL FRAMEWORK FOR MOBILITY DATA
SCIENCE

To enhance our comprehension of the scope and con-
stituents of Mobility Data Science, we introduce a conceptual
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framework (Figure 2). Conceptual frameworks serve as
abstract representations of a specific topic, facilitating com-
munication and shared understanding among stakeholders
to enhance the likelihood of successful development and
utilization [60]. Typically graphical in nature, conceptual
frameworks incorporate visual arrangements of modeling
constructs in the form of graphical symbols and text [61].
Beyond aiding communication, these models contribute to
a deeper understanding of a particular domain and provide
insights into the system design process [62].

In accordance with our conceptual framework, we eluci-
date how Mobility Data Science contributes to both enabling
digitalized mobility services and augmenting knowledge
about mobility and transport artefacts and their utilization.
Mobility Data Science centers on harnessing the value of
data derived from mobility and transport assets and services,
offering insights and facilitating better data-driven decision-
making. Within this framework, the digital layer encompasses
both mobility and transport artefacts and digitalized mobility
services, generating a plethora of data.

For instance, physical entities to be moved, such as people
connected via smartphones or wearables and goods con-
nected through sensors or RFID tags, form an integral part
of this digital layer. Physical transportation assets, including
bicycles, cars, buses, trains, planes, ships, and potentially
drones in the future, are also seamlessly connected to the
digital layer through sensors or actuators. This interconnected
digital layer forms the foundation for the wealth of data
generated, laying the groundwork for effective Mobility Data
Science applications.

The knowledge derived from examining how transporta-
tion assets are operated plays a pivotal role in shaping
product design, ultimately leading to the development of
better-designed transportation systems tailored to specific use
cases. In this context, the physical transportation infrastruc-
ture delineates the space within which entities are moved by
physical transportation assets. Similar to physical entities and
assets, the physical transport infrastructure is increasingly
connected through sensors and actuators, further enhancing
the interconnectedness of the entire system.

These three key entities—physical entities to be moved,
physical transportation assets, and the physical transport
infrastructure—collectively generate and utilize data. This
data serves as invaluable input for mobility data scientists,
empowering them to enable and implement novel digitalized
mobility services. During the operational phase of digitalized
mobility services, substantial amounts of data are generated,
offering insights into various aspects of the transportation
infrastructure, such as capacity utilization, traffic flows, and
more. In essence, this reciprocal flow of data and knowledge
between entities, assets, infrastructure, and digitalized mobil-
ity services is dynamic. It not only fuels the development
and enhancement of digitalized mobility services but also
contributes to an iterative process of refining transportation
systems and infrastructure design, ultimately fostering a more
efficient and informed mobility and transport landscape.
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We present our conceptual framework for Mobility Data
Science in Figure 2 and describe all model elements in detail
in the following subsections.

A. MOBILITY & TRANSPORT ARTEFACTS

The shared essence among various definitions of the term
mobility lies in the ability to move or be moved freely,
signifying its significant impact on society. Litman [63]
specifically characterizes mobility as the physical movement
of people or goods, involving the act of taking or carrying
them from one location to another, whether by means of a
vehicle, aircraft, ship, or on foot. In the context of digitalized
mobility, we conceptualize a group of physical components,
potentially extended by a digital layer, as ““Mobility & Trans-
port Artefacts.” In terms of digitalized mobility, we refer to
group of physical components — whether or not extended by
a digital layer — as Mobility & Transport Artefacts, consisting
of Physical Entities to be transported, Physical Means of
Transport, and Physical Transport Infrastructure [64].

Physical entities to be transported encompass people or
goods intended for movement. In contemporary scenarios,
these entities are increasingly extended and complemented
by a digital layer. For individuals, this augmentation is often
manifested through personal devices such as smartphones or
smartwatches. In the case of goods, radio-frequency iden-
tification (RFID) tags and specialized sensors contribute to
this digital layer. The ubiquity of personal devices among
mobility users means that journeys from point A to point
B are frequently recorded, whether intentionally (as seen
in quantified self-applications) or unintentionally (e.g., for
improving mapping services by providing the user’s position
in the global navigation satellite system - GNSS).

Beyond GNSS capabilities, smartphones, and wearable
devices are equipped with a variety of sensors (acceleration,
gyroscope, temperature), rendering them rich sources of data.
Additionally, bonus cards with Near Field Communication
(NFC) functionality or RFID tags serve as representatives
of the digital layer for individuals, concurrently providing
diverse data and potential information. Analogously, goods in
transit or shipment also integrate a digital layer. In logistics,
standards such as barcodes or RFID have been developed to
track and manage the movement process. Other approaches
focus on the real-time determination of the state of goods,
employing tools like acceleration sensors [65]. This inte-
gration of digital layers enhances the visibility, traceability,
and data richness associated with both individual and goods
mobility.

Transport serves as the instrumental means for the tangible
realization of mobility. The second artefact, physical means
of transport, encompasses all entities utilized to transport
people and goods. These modes can range from privately
owned or shared passenger vehicles, taxis, buses, trucks,
bicycles, trains, planes, cargo vessels, to pipelines—each
playing a role in facilitating physical movement. Like entities
to be transported, physical means of transport are frequently
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FIGURE 2. A conceptual framework for mobility data science.

equipped with or extended by sensors or actuators, enabling
the translation of analog relationships into digital data.

For instance, in the case of passenger cars or trucks,
generated data includes information such as vehicle speed,
acceleration and braking patterns, position, catalytic con-
verter status, and potentially videos from dash cams or
even radar and/or lidar data [66]. Conversely, data about
bicycles, such as speed, position, and unusual acceleration
in the case of evasive actions, can be collected using the
cyclists’ smartphones, for example [67]. In the current era of
technology-driven mobility and transport systems, character-
ized by a push for increased automation, further integration
of sensors and actuators in transportation assets is anticipated.
This integration aims to capture contextual information, draw
conclusions, and make decisions based on the acquired data.
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Consequently, this ongoing development is expected to result
in a growing number of potential data sources and an increase
in data volume.

Applications based on mobility and transport data are
diverse and include areas such as maintenance for trans-
portation assets [20] or real-time traffic planning [68].
As technology continues to advance, the wealth of data gener-
ated by transportation assets presents numerous opportunities
for improving efficiency, safety, and overall performance
within the mobility and transport ecosystem.

A crucial enabling factor for mobility and transport is a
well-suited physical transport infrastructure. The construc-
tion and operation of roads, (air)ports, metros, traffic lights,
etc., play a pivotal role in facilitating and shaping mobil-
ity and transport. It’s evident that the planning of mobility
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and transport infrastructure, whether in urban or rural areas,
is intricately linked to the economy [69], the environment in
terms of emissions resulting from mobility and transport [70],
or urban sprawl in spatial development [71]. Additionally,
it significantly impacts society, as access to transportation
influences the health of individuals [72].

The infrastructure within the realm of mobility and trans-
port contributes an increasing amount of data through its
digital layer. Traffic lights and traffic counters can be con-
nected in real-time to traffic planning systems, while video
and audio data support decision-making processes, especially
in terms of planning and safety. Local weather data further
enables early information and intervention. In summary, the
physical transport infrastructure serves as the third artefact in
our conceptual framework for Mobility Data Science. This
infrastructure not only forms the backbone of mobility sys-
tems but also acts as a dynamic source of data that, when
integrated with the digital layer, enhances the efficiency,
safety, and overall functioning of the entire mobility and
transport ecosystem.

B. MOBILITY DATA SCIENCE METHODS: INGREDIENTS
AND PROCESSES

The examples mentioned earlier showcase a vast array of
applications and the underlying heterogeneous data in the
realm of mobility and transport. Data Science methods play
a crucial role in extracting knowledge from this diverse data,
forming the foundation for an exchange between digitalized
mobility services and mobility and transport artefacts. How-
ever, to effectively utilize data from these varied sources,
data must undergo a progressive transformation into informa-
tion, knowledge, and ultimately wisdom in terms of valued
understanding [73].

To achieve this transformation, we adopt the Data Science
process introduced by Pfister and Blitzstein from Harvard
University. This approach, which is also applicable in the
context of mobility and transport, typically involves the five
steps (1) asking questions, (2) collecting data, (3) examining
data, (4) modeling data, and (5) communicating results. These
steps may not necessarily follow a linear process and can
include single or multiple feedback loops. While other pro-
cess models such as CRISP-DM [74] or ASUM-DM DM [75]
can also be applied in the context of Mobility Data Science,
Pfister and Blitzstein’s concept is particularly accessible for
interdisciplinary teams comprising both domain experts and
non-experts. It encourages the clarification of the context
before delving into technical and data challenges.

The initial step in this process is to formulate and define a
question to be addressed with data. These defined questions
heavily influence the acquisition of the required data, guiding
which data may be relevant for analysis. When integrating
multiple data sources, synchronization becomes essential to
enable joint analysis [76]. Furthermore, the relevant data must
be processed and stored, irrespective of its size, posing a
challenge in the field of mobility and transport where the
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volume of data can be substantial. This initial phase sets the
stage for the subsequent stages in the Data Science process:
Several key steps follow the initial question formulation.
These steps include data cleaning, normalization, transforma-
tion, exploration, modeling, validation, and communication
of results:

Data Cleaning involves the removal of irrelevant data and
processing of incomplete or noisy data to enhance the qual-
ity and reliability of the dataset. Data Normalization aims
to bring numerical values to a common scale, facilitating
consistent comparisons and analyses. Data Transformation
encompasses the conversion of pre-processed data from one
format or structure to another, optimizing it for subsequent
analysis. Data exploration analyses the collected, prepro-
cessed, and transformed data to identify specific characteris-
tics using methods such as data visualization, tabular reports,
or descriptive statistics. Patterns, relationships, and anomalies
can be uncovered during this exploration. In the exploration
phase, machine learning methods can be employed to identify
relationships in data that may not be observable with more
traditional methods, especially in the context of multidimen-
sionality. The modeling phase involves determining whether
the available data are sufficient to create a model that can
answer the posed question. It includes selecting the types of
models to be used, creating data-based models, and validat-
ing their effectiveness. In the modeling phase, decisions are
made on how to answer the question posed, whether through
explanatory, predictive, or descriptive analysis. The final step
involves summarizing the findings and communicating the
results obtained from the validated models. This can be
achieved through storytelling, visualizations, and applica-
tions. Before dissemination, it is crucial to ensure that the
results make sense in the specific, often domain-dependent
context and effectively answer the desired question.

C. DIGITALIZED MOBILITY SERVICES

Digitalized Mobility Services (DMS), exemplified by plat-
forms like Uber or Flixbus, already leverage information and
knowledge derived from Data Science. At a more abstract
level, digitalized mobility services [17], [77] add an addi-
tional digital layer to physical transport and mobility services,
aiming to enhance efficiency, often referred to as smart mobil-
ity. In this context, smart mobility is a complex set of projects
and actions, different in goals, contents, and technology
intensity [78]. We want to highlight the pivotal role of digital
technology in achieving the objectives of ‘““smart mobility,”
including reducing pollution, traffic congestion, noise pol-
lution, transfer costs, and enhancing passenger safety and
transfer speed.

The European Commission’s roadmap on ‘“‘Smart Mobil-
ity Systems and Services” [79] underscores the importance
of the proactive integration of smart mobility services
with existing public transport and utility systems in future
European innovation actions. Digitalized mobility services,
as a critical component, play a crucial role in the shift
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toward smart mobility by enabling better coordination and
decision-making based on processed information.

Researchers are increasingly exploring how digital tech-
nologies impact mobility and transport, resulting in various
approaches and taxonomies, but without a final and uni-
versally agreed-upon conclusion (cf. e.g., [77] or [80]).
Following Docherty et al. [81], examples such as shared
mobility, on-demand mobility, intermodal mobility, or inte-
grated mobility are introduced as digitalized mobility service
categories, though a definitive and validated list is not
provided.

Shared mobility involves the sharing of a transportation
mode among two or more individuals, such as bicycles or
vehicles. Shared mobility platforms typically operate without
a predetermined form of ownership concerning shared trans-
portation assets.

On-demand mobility is considered a subset of shared
mobility that provides rides on demand for a fee. Sub-
categories include ride-hailing (including taxis as well as
services like Uber or Lyft) and ride-splitting, defined as a
ride-sourcing service that matches riders with similar origins
or destinations to the same driver and vehicle in real time [82].

Intermodal mobility is a specific form of multimodality.
In the context of freight, multimodality refers to the transport
of goods using more than one mode (e.g., rail and sea),
while intermodality involves transporting goods in the same
transport unit, such as a container. For passenger transport,
multimodality enables access to multiple modes during a
trip, aiming to facilitate seamless travel in a combined travel
chain using various transport modes like cars, trains, and
bicycles [83].

Integrated mobility refers to the integration of different
services, such as information, payment, and multimodality,
through a single or common interface. These services aim
to optimize personal travel across different transport modes,
offering a combination of all available modes (bike, car,
bus, train, etc.) based on cost and/or time considerations for
specific routes and schedules [80].

These categories highlight the diverse ways in which dig-
italized mobility services are shaping and transforming the
landscape of transportation, offering users more flexible,
efficient, and interconnected options for their journeys. It’s
crucial to highlight that digitalized mobility services not only
consume data but can also contribute by providing valuable
data for further use. This data may encompass information
on the mobility behavior of individual users or aggregated
data regarding the type of transport demanded. This two-way
data exchange plays a pivotal role in enhancing the overall
understanding and optimization of mobility services.

IV. FRAMEWORK APPLICATION

In this section, we apply our conceptual framework for Mobil-
ity Data Science. Firstly, we utilize the framework to guide
the design of a digitalized mobility service for driving style
detection (subsection A). Then, we employ the framework
to gain structured insights into existing digitalized mobility
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services from the literature by organizing them according to
our framework (subsection B).

A. APPLICATION OF THE FRAMEWORK TO DESIGN
DIGITALIZED MOBILITY SERVICES

The application of Mobility Data Science can result in the
creation of innovative data-driven services. While familiar
examples such as shared mobility and intermodal mobil-
ity were outlined in the previous section, in this section,
we will elaborate on the development of a concrete digitalized
mobility service designed to enhance driving and road safety.
Aggressive driving stands out as a significant cause of acci-
dents, where harsh acceleration and braking can immediately
impact driving safety. Detecting such events in vehicle data
forms the basis for a digitalized mobility service designed to
identify and transparently communicate harsh driving behav-
ior to relevant stakeholders, such as drivers. The ultimate goal
is to bring about a positive change in driving behavior and
contribute to overall road safety [10].

In the development of such a digitalized mobility service,
service developers can tap into a wealth of valuable data from
the mobility and transport ecosystem. Human drivers, for
instance, bring their smartphones into their vehicles. Given
that smartphones are equipped with a diverse array of sensors,
they can offer insights into factors like time, location, accel-
eration, and rotation. Vehicles, serving as physical means of
transport, come with a variety of sensors—steering angle sen-
sors, radar, lidar, wheel speed sensors—utilized for vehicle
functionality and safety. Furthermore, the physical transport
infrastructure is increasingly fitted with technologies like
cameras, parking sensors, or roadside units, capable of pro-
viding pertinent data such as the speed and distance of passing
vehicles, or the road temperature.

To illustrate how a driving style detection service can be
implemented (cf. Figure 3), we will conduct Mobility Data
Science according to the proposed framework and detail the
results in the following subsections.

1) ASK QUESTION

In our initial step, we formulate a pertinent research question
aimed at enhancing driving safety: How can data generated
in the mobility and transport ecosystem facilitate the detec-
tion of harsh driving styles? Driving styles refer to habitual
driving behaviors characteristic of groups of drivers [85] and
represent a significant area of research for advanced vehicle
automation in the future. As per Sagberg [85], global driving
styles encompass multiple driving indicators (such as aggres-
sive, calm, or careful driving), while specific driving styles
are measured by one or two indicators. Various methods,
including surveys, driver interviews, online analysis of vehi-
cle data, and offline analysis of vehicle data, can be employed
to identify driving styles. In this context, we want to focus our
attention on three maneuvers—harsh acceleration, braking,
and turning—as indicators of a harsh driving style. These
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FIGURE 3. Applying the conceptual framework for mobility data science to guide the design of a digitalized mobility service for driving style

detection.

specific indicators will be explored further in the subsequent
analysis.

2) GET DATA

In the second step, we need to collect the necessary vehi-
cle data. We have three possible approaches to vehicle data
acquisition, utilizing the driver’s smartphone mounted in the
vehicle to record vehicle movements and other contextual
information, connecting a data logger to the vehicle’s on-
board diagnostic (OBD) interface to collect vehicle data, such
as speed, RPM, or location, or installing a professional log-
ger connected to the vehicle’s communication system (e.g.,
Controller Area Network or CAN) to obtain more extensive
vehicle data, including the status of vehicle assistance sys-
tems, steering wheel angle, or wheel speed.

While the first option is straightforward, it can only capture
contextual data and track the vehicle’s movement without
accessing vehicle sensors. The second option may provide
access to some additional vehicle sensor data relevant to
driving style detection. The third option theoretically allows
access to all vehicle sensor signals, but decoding the raw
data from the CAN bus requires information provided by the
vehicle manufacturer or the relevant vehicle Electronic Con-
trol Unit (ECU) manufacturer (known as CAN DBC files).
We have chosen the second option, using a car-mounted
vehicle data logger to capture data such as speed, location,
acceleration, and rotation for further exploration.

3) EXPLORE DATA
In the third step, we conducted an experiment involving ten
drivers tasked with driving in city traffic for two hours to
generate vehicle data. We noted instances of harsh accelera-
tion, braking, or turning maneuvers, recording the maneuver
type, location, and time for labeling purposes. Subsequently,
we exported the logged time series data from all drivers to our
computer for visual data exploration, including data plotting.
We focused on plotting speed, acceleration, and rotation
at the times and locations where harsh driving maneuvers
occurred. Changes in these signals were of particular interest.
After storing the required vehicle data, several steps were
performed to prepare the data for analysis. This involved
addressing missing values, incorrect values, and outliers
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through methods like imputation or removal. Some signals
with significant noise needed smoothing. Additionally, each
signal was resampled to a common sampling rate for efficient
data analysis, considering the specific analysis question.
Alignment of coordinate axes between the data logger
and the vehicle was another critical step. Many signals are
vector-valued, with acceleration being a notable example.
Expressing these vectors in the reference frame of the car,
such as aligning x-acceleration with the driving direction,
simplifies analyses and interpretations. Multiple signals can
be relevant depending on the type of event being analyzed.

4) MODEL DATA

The data prepared in this way can be used to intensify work
on further data science questions to search for interesting
events. In a fourth step we created a model using data from
the first five drivers to detect each type of harsh driving
behavior, harsh acceleration, braking and turning. The sig-
nals vehicle speed, acceleration in the driving direction, and
rotation around the lateral axis (“pitching’’) are particularly
suitable for detecting strong acceleration and braking maneu-
vers. Pitching is caused by the change in weight distribution
during speed changes: when accelerating, more weight moves
to the rear axle - the rear drops and the front rises. When
braking, it is the other way round. These movements can
be detected. However, since detection using only one single
signal can be prone to error, we use several signals in our
model, which all must exceed certain thresholds simultane-
ously to trigger a detection of a harsh acceleration, driving or
curving event. We created a model to detect the three types of
driving styles from the collected data by using the following
procedure, detect safe driving events when an ‘event-signal’
exceeds a certain threshold, and then store them together with
associated information in a dataset for further processing and
visualization. We finally used the data from the second group
of drivers for testing and validating our model.

5) COMMUNICATE RESULTS

In a fifth and final step, to communicate the results effec-
tively to the drivers, we developed a dashboard that offers
statistical insights into their trips, including information such
as trip duration and the number of safety-related events
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FIGURE 4. Applying the conceptual framework for mobility data science on existing digitalized mobility services from the literature to better

structure and understand them.

detected during their journeys. Moreover, we implemented
a marker-based visualization to display the three differ-
ent events using markers overlaid on a geographical map,
leveraging the location information. This visualization aims
to assist drivers in comprehending their driving style and
encourage them to adopt safer driving practices. Additionally,
drivers can compare their driving style with that of others,
fostering motivation to become the safest driver within their
peer group.

B. APPLICATION OF THE FRAMEWORK TO BETTER
UNDERSTANDING DIGITALIZED MOBILITY SERVICES

The application of our conceptual framework for Mobility
Data Science to the initial case, which led to the development
of a driving style detection solution, has already demonstrated
its usefulness. In a subsequent step, we further apply our
framework model to additional cases of digitalized mobility
solutions presented in the scientific literature, showcasing its
utility in classifying cases and establishing its validity as a
general procedural model for Mobility Data Science.

In this process, we extract relevant information, including
the mobility topic addressed, the research question, details
on data collection, exploration, modeling, communication of
results, and the digitized mobility service developed, from
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various scientific papers ( [54], [86], [87], [88], [89], [90],
[91]) (cf. Figure 4).

In the first work examined [86], researchers developed a
digitalized mobility service called “Drive Safely,” which is a
smartphone application designed to monitor driving behavior.
The application focuses on detecting road-safety relevant
inattentive and distracted driving by utilizing data collected
from the driver’s personal smartphone. The smartphone’s
sensors and cameras record the driver’s head and upper body
movements, as well as the driver’s voice, thus capturing
mobility data from individuals connected via their personal
smartphones. The service processes high-frequency and high-
volume time series data, specifically facial images and upper
body movements of forward-facing drivers. It extracts param-
eters such as eye opening, head yaw angle, head tilt angle, and
mouth opening from the recorded data. By analyzing visual
features of the driver, including head posture, eye move-
ments, and dangerous gazes, the service classifies dangerous
situations. The core functionality of the application lies in
its ability to detect driver distraction and subsequently alert
drivers, prompting them to regain focus on the road.

In the second work examined [54], researchers developed
a digitalized mobility service focused on road damage detec-
tion. This service utilizes machine learning techniques and
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is designed to analyze transport data collected from bicycle
trips. The data is recorded using an HD camera mounted
on a bicycle, capturing images of the road surface, and a
GPS sensor that provides the vehicle’s position with high fre-
quency and volume. The data pre-processing phase involved
image labeling, employing computer vision approaches to
extract relevant features, and creating training and valida-
tion datasets. The study explored the performance of various
classifiers, with gradient boosting and random forest demon-
strating the best overall effectiveness in the road damage
detection application.

In the third work examined [87], researchers developed
a digitalized mobility service focused on public transport
performance monitoring. This service takes advantage of
transport data sourced from public transport fleets operat-
ing in a metropolitan area. Specifically, the system utilizes
data obtained from the high-volume, real-time general transit
feed specification (GTFS) feed provided by a public transit
provider. The GTFS feed includes information about vehi-
cle locations and vehicle delays. The authors implemented
complex data pipelines to process substantial amounts of
geo-spatial data, transforming it into a suitable format for
analysis and visualization. The processing involved diverse
techniques such as filtering, data aggregation, clustering, and
machine learning approaches. For communicating the results,
the system employs various visualization elements like heat
maps, point clouds, and network flow animations, displayed
on geographic maps using the KeplerGL library.

In the fourth work examined [90] the researchers intro-
duced the REDTag Service, a digitalized mobility service
designed for tracking and monitoring the status of parcels.
The service leverages embedded Radio-Frequency Identifica-
tion (RFID) tags in parcels, equipped with sensors, batteries,
memory, processor, and a network module. These tags col-
lect various data, including information about sender and
receiver details, package specifications, hardware tag ID,
assigned worker, events, shipping order, and the current seg-
ment indicating progress towards the destination. The authors
employed 3D visualization techniques after Singular Value
Decomposition and visualized pairwise feature correlation
to explore potential dimensionality reduction. The back-end
service using tuned classification algorithms computes pre-
dictions. The front-end service offers real-time information
on the status of parcels and visualizes multidimensional data.
The REDTag Service contributes to improving parcel deliv-
ery services by enhancing knowledge on product faults and
service disruptions.

In fifth examined work, the design of an intermodal
route planning model for urban intermodal transporta-
tion networks [88], the researchers utilized low-frequency,
high-volume field data collected over 5 weeks. The data
sources included GPS-based floating car data, information on
412 central public transit stops, records of available shared
vehicles at 30-minute intervals, optimal routes for 120 dif-
ferent origin-destination pairs collected every 60 minutes,
and optimal routes for bicycles, pedestrians, and e-scooters.
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The research involved iterative preprocessing of data, such as
accounting for changes in schedules during the data record-
ing period and approximating missing data. A graph model
was then established and solved through a route planning
algorithm. The resulting model, a proof-of-concept, serves
as a digitalized mobility service for reliable and time-saving
real-world intermodal planning. In their digitalized mobil-
ity service, the authors also visualize travel time savings
achieved through intermodal transportation and discuss the
impact of parameters such as trip complexity, traffic level,
and trip distance.

In the sixth work examined, a study focusing on the
environmental impact of an increased share of ride-hailing
in cities, with a particular emphasis on mobility behavior
was conducted a [89]. The research involved gathering data
on mobility behavior and the environmental impact of var-
ious mobility options, enabling a Life Cycle Assessment
(LCA) of mutualized mobility behavior. The authors explored
the data using descriptive statistics and subsequently cre-
ated various LCA scenarios based on different datasets with
low-frequency, low-volume, and well-structured information.
These scenarios were used to visualize the environmen-
tal development over the years concerning the usage of
mutualized mobility offers. The resulting (proof-of-concept)
model serves as a digitalized mobility service providing
insights into the ecological and mobility aspects related to
the environmental impact of mutualized mobility in urban
contexts.

In the seventh work examined [91] the focus is on creat-
ing a digitalized mobility service for improving wayfinding
for visually impaired travelers to enhance accessibility. The
research addresses the question of how visually impaired
individuals can better navigate indoors. The proposed
approach utilizes video data captured by a smartphone and
a 2D map of a room. To recognize standard “EXIT” signs,
the authors employ an Adaboost cascade-based approach.
Simultaneously, the orientation in the room is determined
through a localization algorithm that uses the indoor map,
considering the locations of walls and barriers, as well as the
position and orientation of signs. The outcome is a mobile
application for smartphones that enables indoor localization
and wayfinding, serving as a digitalized mobility service for
enhanced accessibility.

In conclusion, the utilization of our conceptual framework
as a characterization and categorization scheme offers a sys-
tematic approach for providing a comprehensive description
of how Mobility Data Science contributes to the development
of digitalized mobility services. Applying our conceptual
framework to existing digitalized mobility services from
the literature enables us to better structure and understand
these services. By systematically analyzing these services
according to our framework, we can identify common pat-
terns, key components, and areas for improvement. This
structured approach enhances our understanding of how
digitalized mobility services are conceptualized, designed,
and implemented, leading to insights that can inform the
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Contribution Description

Conceptual Introduces a conceptual framework for Mobility Data Science, integrating theoretical insights from
Framework mobility and transport science with data science principles.

Theoretical Establishes theoretical underpinnings for understanding the interplay between mobility, data
Foundations science, and digitalized services.

Methodological | Provides methodological guidance for researchers to apply the framework in analyzing and
Guidance designing digitalized mobility services.

Epistemological | Offers epistemological insights into the nature of data-driven mobility research and its implications
Insights for theory development.

Paradigmatic Represents a paradigmatic shift in the conceptualization of mobility services, emphasizing data-
Shift centric approaches for innovation.

FIGURE 5. Summary of our contributions.

development of future services and drive innovation in the
mobility domain.

V. DISCUSSION, CONTRIBUTION, AND LIMITATIONS

A. NOVELTY AND CONTRIBUTIONS TO THEORY

Data lies at the core of data-driven services within the mobil-
ity and transport ecosystem. Presently, a wealth of valuable
data is generated as a by-product. However, there exists
untapped potential in harnessing this data to usher in new
data-driven services [10]. In response to this, we introduce
the concept of Mobility Data Science, a novel intersection
of two distinct research domains: Data Science and Mobility
and Transport. This innovative approach combines the realms
of mobility and transport with data science, addressing a
theoretical gap by providing conceptual models that illustrate
how data from the mobility and transport ecosystem can give
rise to innovative data-driven services. Mobility Data Sci-
ence presents a pioneering perspective on the challenges and
possibilities associated with utilizing emerging data to create
digitalized mobility services, employing methodologies such
as big data analytics, time series data analytics, machine
learning, and more.

Our conceptual framework for Mobility Data Science acts
as a cohesive framework that bridges the digital layer of
physical transport artefacts—such as people or goods, means
of transport, and transport infrastructure—with the digital
layer of data-driven services. This framework serves as a
unifying element for researchers and practitioners keen on
harnessing the potential of mobility and transport data.

We define Mobility Data Science as the practical applica-
tion of data science principles within the realm of mobility
and transport. The development of our conceptual framework
stands as a key theoretical contribution, derived from insights
provided by domain experts. These insights were gathered
through interviews with stakeholders in the mobility and
transport ecosystem and collaborative projects funded by the
European Commission under the Horizon 2020 framework.

The novelty of our Mobility Data Science (cf. Figure 5)
approach lies in its integration of two distinct research
domains: mobility and transport science, and data science.
This unique combination creates a conceptual framework that
serves as a bridge between the physical mobility and transport
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artefacts and the digital layer of data-driven services. The
approach provides a systematic and comprehensive model
for understanding, processing, and leveraging the wealth of
data generated within the mobility and transport ecosystem
to develop impactful digitalized mobility services. It not only
addresses technical aspects but also emphasizes a concep-
tual, non-technical perspective to guide the development of
innovative solutions in the realm of mobility and transport.
This integrative approach is novel and contributes to the
advancement of research and practice in the field.

Our framework offers unique insights and methodologies
that haven’t been explored in the existing literature. By com-
bining general data science principles with domain-specific
considerations, such as those found in the mobility sector, our
framework provides a specialized approach that can enhance
the analysis and application of data in this context. Addition-
ally, our work contributes to the advancement of scientific
knowledge by providing a structured framework that can
be applied and validated in real-world scenarios, ultimately
leading to further innovation and progress in the field of
mobility data science.

Most existing data science methodologies are predomi-
nantly technical, emphasizing the development and applica-
tion of algorithms for data-driven problem-solving. In the
context of mobility and transportation, these methodolo-
gies often center on algorithmic approaches such as object
recognition, vehicle trajectory planning, traffic flow analysis,
or driver classification. However, data science encompasses
not only these technical dimensions but also crucial con-
ceptual aspects that are frequently overlooked. Our work
addresses this conceptual perspective within data science,
aiming to transition from the physical realm of mobility and
transport artefacts to the generated data, relevant questions,
and actionable data-driven services that deliver societal value.
By emphasizing the conceptual dimension, we contribute to
a more comprehensive understanding of data science in the
context of mobility and transportation.

The second key contribution of our paper lies in its non-
technical, conceptual approach to Mobility Data Science.
Through extensive evaluation and application of our concep-
tual framework in various cases (cf. figure 4 and figure 6),
we assert that our model can offer significant value to both
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researchers and practitioners, providing insights into how
mobility and transport data can be utilized to develop diverse
data-driven services. Initially, we applied our conceptual
framework to demonstrate its effectiveness in guiding the
development of a specific digitized mobility service, focusing
on driving style recognition. This practical application show-
cases how our framework facilitates the translation from data
to technical implementation through specific approaches.
In a subsequent step, we further validate the utility of
our framework by applying it to several published cases
from the literature, highlighting its broad applicability and
effectiveness. By doing so, we aim to demonstrate the ver-
satility and robustness of our framework in organizing and
making sense of various digitalized mobility services. This
approach not only validates the framework’s applicability
across different scenarios but also highlights its potential to
provide clearer insights and more cohesive understanding of
existing research. By structuring published cases of digital-
ized mobility services according to our framework, we can
identify common patterns, gaps, and opportunities in the
field, ultimately contributing to more informed and effective
development of future services.

We intentionally crafted Mobility Data Science as a high-
level framework, recognizing that it may not encompass
all intricacies involved in designing digitalized mobility
services. Despite its limitations, we foresee significant impli-
cations for research. Our framework can serve as a valuable
structuring tool for designing, comparing, and analyzing
cases of mobility and transportation service development.
Additionally, it can aid academics in gaining a clearer under-
standing of the opportunities and challenges inherent in
the development of digitalized mobility services. While we
believe the framework’s transferability to other domains,
it is important to note that demonstrating this transferability
extends beyond the scope of our current paper.

Mobility and transport play pivotal roles in advancing
technologies related to sensors, actuators, mechatronics, and
information and communication technologies. The integra-
tion of sensors in vehicles, urban infrastructure, and roads
produces an abundance of data, forming the foundation
for innovative data-driven services. Our conceptual frame-
work aims to assist individuals keen on harnessing this data
wealth. Mobility and transport, being a multifaceted applica-
tion domain, involve diverse areas of expertise and distinct
languages that can pose challenges for those outside these
communities to interpret. The complexity extends to the
data itself. In the realm of physical transport artefacts like
vehicles, data can be categorized across various stages of
the product life cycle, spanning from inception to utiliza-
tion and eventual disposal. In the context of infrastructure,
data is typically associated with the usage phase, offering
insights into the condition and operation of infrastructure
through sensor-based mechanisms, such as traffic monitoring
or air quality assessments. This complexity forms intricate
data ecosystems that have the potential to fuel additional
applications, contingent upon the availability of data for such

VOLUME 12, 2024

endeavors. To facilitate this, Mobility Data Spaces have been
established in the European Union, serving as collaborative
platforms where stakeholders can share mobility-generated
data to foster the development of innovative services. These
data spaces act as interconnected hubs for entities inter-
ested in collaborative data sharing to drive advancements in
mobility applications.

B. CONTRIBUTIONS TO PRACTICE

Our research holds notable implications for the realm of
data governance, particularly in the intricate landscape of
conceptualizing value creation in data-driven services [10].
In this context, our work stands to empower the industry in
harnessing the potential of mobility and transport data by
offering a comprehensive guide for the development of data-
driven services. Numerous initiatives have been initiated to
provide access to specific data sources, ranging from data
marketplaces to data brokers.

The insights from our paper aim to aid the industry in
crafting more innovative use cases grounded in shared data.
To exemplify the applicability of our work, we present a
straightforward case example. The utilization of our frame-
work facilitated the development of a digitalized mobility
service for driving style detection. This application case not
only served to assess the proposed conceptual framework but
also underscored its practical value and utility. Furthermore,
it can function as a step-by-step reference example, offering
practical guidance for service development. Finally, apply-
ing our framework to existing digitalized mobility services
enhances the understanding of services also for practitioners,
aiding in their analysis and improvement.

VI. CONCLUSION AND FUTURE WORK

In conclusion, we introduce a pioneering approach, Mobil-
ity Data Science, designed to propel the development of
data-driven services within the mobility and transport ecosys-
tem by leveraging the data it generates. We present a
conceptual framework for Mobility Data Science, illustrating
how it can establish connections between the digital layers
of mobility and transport artefacts, including people, goods,
means of transport, and transport infrastructure, with the
digital layer of digitalized mobility services.

Moreover, we showcase the practical application of our
framework by expediting the development of a specific dig-
italized mobility service tailored to driving style detection.
Additionally, we demonstrate its value in structuring and
understanding existing digitalized mobility services. Our
research makes a significant contribution to both transport
research and practice by offering a framework grounded in the
insights of transport domain experts, revealing how data from
the mobility and transport ecosystem can drive the evolution
of digitalized mobility services.

Certainly, our work provides a foundation for future
research in several ways. Firstly, researchers can utilize our
conceptual framework when embarking on the development
of digitalized mobility services, enabling them to navigate
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FIGURE 6. Applying the conceptual framework for mobility data science on existing digitalized mobility services from the literature to better

structure and understand them (additional examples).

the intricate landscape of data-driven innovations. Secondly,
our framework can serve as a valuable tool for compara-
tive analyses, allowing researchers to systematically assess
and compare various cases of digitalized mobility services.
Finally, we anticipate that our framework’s applicability
extends beyond the mobility and transport domain, offering
insights for other domains where non-digital artefacts gener-
ate data during their utilization. This opens up further avenues
for cross-disciplinary applications and further exploration of
data-driven service development across diverse domains.

APPENDIX A: SELECTED STUDIES
Further case studies of digitalized mobility services are
detailed in Figure 6.
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