
101093016 - PISTIS - HORIZON-CL4-2022-DATA-01-04

D2.3 - Data Management and Protection services - Beta version Page 1 of 144

Promoting and Incentivising Federated, Trusted, and Fair Sharing and

Trading of Interoperable Data ASsets

D2.3
Data Management and Protection

services -
Beta version

Editor(s) Yury Glikman

Lead Beneficiary FHG

Status Final

Version 1.0

Due Date 30/06/2024

Delivery Date 30/06/2025

Dissemination Level PU

 Funded by the European Union under Grant Agreement 101093016. Views and opinions
expressed are however those of the author(s) only and do not necessarily reflect those
of the European Union or the European Commission. Neither the European Union nor
the granting authority can be held responsible for them.

Ref. Ares(2025)5219610 - 30/06/2025

101093016 - PISTIS - HORIZON-CL4-2022-DATA-01-04

D2.3 - Data Management and Protection services - Beta version Page 2 of 144

Project PISTIS – 101093016

Work Package WP2 - PISTIS Data Spaces Factory and Trusted Data Management
Services

Deliverable D2.3 Data Management and Protection services - Beta version

Contributor(s) Suite5, ATOS, FHG, EUT, SPH, UBITECH, ATHENA, ASSENTIAN, ICCS

Reviewer(s) Ilia Christantoni, Dimitra Tsakanika (DAEM), Florian Feik (TRAFF)

Abstract This deliverable presents the Beta release of the core PISTIS factory
services dealing with data management and protection, and of the
Data Explorer Service

101093016 - PISTIS - HORIZON-CL4-2022-DATA-01-04

D2.3 - Data Management and Protection services - Beta version Page 3 of 144

Executive Summary

PISTIS aims to develop a reference platform for the sharing/trading and monetisation of the

proprietary data of an organization, guaranteeing a secure, trusted and controlled exchange

and usage of data assets and data-driven intelligence.

This document presents the Beta version of the design and implementation of the PISTIS

components belonging to one of the following bundles from the PISTIS architecture, as coming

out of the design and development activities of WP2 of the project:

• Data Management and Assessment bundle, that is responsible for the collection of

data from existing repositories available to an organisation, the refinement,

transformation, and improvement of data, judging also its quality and providing

services to improve it and make it interoperable.

• Data & Metadata Storage bundle, that is delivering a catalogue for the data available

for each organisation and those that are made available as “published” data over the

whole ecosystem, alongside with the appropriate data storage facilities to hold the

data.

• Data Discovery bundle, that provides services for searching and discovering the

available data assets that might be of interested to a Data Consumer

• Data Exchange bundle, that facilitates the peer-to-peer exchange of the data assets

between a Data provider and a Data Consumer, adhering to the terms of the contract

that has been signed to govern the overall transaction.

• Security, Trust & Privacy Preservation bundle, that is offering services for

strengthening data security and privacy.

• AI & Interoperability Repos bundle, that provides the different repositories for storing

and propagating different models (data models, AI models and metadata models) that

need to be consumed by the various components.

The Beta version of the components presented in this document represents an evolution of

the Alpha version previously documented in Deliverable D2.2, “Data Management and

Protection Services – Alpha Version.” This document builds upon D2.2 by updating existing

sections and introducing new sub-sections for each component, including:

• Main Improvements in the Beta Version

• Developer Documentation

• Source Code

Most of the components described herein are open source and publicly accessible. The

remaining components are maintained in private repositories, with access restricted to the

project team and reviewers.

As a next step, the consortium will integrate the components presented in this deliverable and

in Deliverable D3.3 into the Beta release of the PISTIS platform, as documented in Deliverable

D4.3.

101093016 - PISTIS - HORIZON-CL4-2022-DATA-01-04

D2.3 - Data Management and Protection services - Beta version Page 4 of 144

Table of Contents

1 Introduction .. 14

1.1 Document structure ... 15

2 Data Management and Assessment Bundle ... 16

2.1 Data Check-In ... 16

2.1.1 Batched Data Check-in ... 17

2.1.2 Streaming Data Check-in .. 23

2.2 Data Transformation .. 26

2.2.1 Component Description ... 26

2.2.2 Main Improvements in Beta Version ... 26

2.2.3 Component Backlog ... 27

2.2.4 Functional Requirements ... 27

2.2.5 Non-Functional Requirements ... 28

2.2.6 Component Architecture .. 28

2.2.7 Technology Background ... 28

2.2.8 Graphical User Interface .. 29

2.2.9 Developer Documentation ... 30

2.2.10 Source Code .. 30

2.3 Job configurator ... 32

2.3.1 Component Description ... 32

2.3.2 Main Improvements in Beta Version ... 32

2.3.3 Component Backlog ... 33

2.3.4 Functional Requirements ... 33

2.3.5 Non-Functional Requirements ... 33

2.3.6 Component Architecture .. 34

2.3.7 Technology Background ... 36

2.3.8 Graphical User Interface .. 36

2.3.9 Source Code .. 38

2.4 Analytics Engine ... 39

2.4.1 Component Description ... 39

2.4.2 Main Improvements in Beta Version ... 39

2.4.3 Component Backlog ... 39

2.4.4 Functional Requirements ... 40

101093016 - PISTIS - HORIZON-CL4-2022-DATA-01-04

D2.3 - Data Management and Protection services - Beta version Page 5 of 144

2.4.5 Non-Functional Requirements ... 40

2.4.6 Component Architecture .. 40

2.4.7 Technology Background ... 41

2.4.8 Graphical User Interface .. 41

2.4.9 Developer Documentation ... 42

2.4.10 Source Code .. 42

2.5 Data Enrichment ... 42

2.5.1 Component Description ... 42

2.5.2 Main Improvements in Beta Version ... 43

2.5.3 Component Backlog ... 44

2.5.4 Functional Requirements ... 44

2.5.5 Non-Functional Requirements ... 44

2.5.6 Component Architecture .. 45

2.5.7 Technology Background ... 46

2.5.8 Graphical User Interface .. 46

2.5.9 Developer Documentation ... 47

2.5.10 Source Code .. 47

2.6 Data Quality Assessment .. 48

2.6.1 Component Description ... 48

2.6.2 Main Improvements in Beta Version ... 48

2.6.3 Component Backlog ... 48

2.6.4 Functional Requirements ... 49

2.6.5 Non-Functional Requirements ... 50

2.6.6 Technology Background ... 50

2.6.7 Graphical User Interface .. 50

2.6.8 Component Architecture .. 53

2.6.9 Developer Documentation ... 54

2.6.10 Source Code .. 55

2.7 Data Insights Generator ... 55

2.7.1 Component Description ... 55

2.7.2 Main Improvements in Beta Version ... 55

2.7.3 Component Backlog ... 56

2.7.4 Functional Requirements ... 56

2.7.5 Non-Functional Requirements ... 56

101093016 - PISTIS - HORIZON-CL4-2022-DATA-01-04

D2.3 - Data Management and Protection services - Beta version Page 6 of 144

2.7.6 Component Architecture .. 57

2.7.7 Technology Background ... 57

2.7.8 Graphical User Interface .. 57

2.7.9 Developer Documentation ... 58

2.7.10 Source Code .. 58

3 Data & Metadata Storage Bundle ... 59

3.1 Data Catalogues.. 59

3.1.1 Component Description ... 59

3.1.2 Main Improvements in Beta Version ... 59

3.1.3 Component Backlog ... 60

3.1.4 Functional Requirements ... 60

3.1.5 Non-Functional Requirements ... 61

3.1.6 Component Architecture .. 61

3.1.7 Technology Background ... 62

3.1.8 Graphical User Interface .. 63

3.1.9 Developer Documentation ... 65

3.1.10 Source Code .. 65

3.2 Factory Data Storage .. 66

3.2.1 Component Description ... 66

3.2.2 Main Improvements in Beta Version ... 66

3.2.3 Component Backlog ... 67

3.2.4 Functional Requirements ... 68

3.2.5 Non-Functional Requirements ... 68

3.2.6 Component Architecture .. 68

3.2.7 Technology Background ... 70

3.2.8 Graphical User Interface .. 70

3.2.9 Developer Documentation ... 70

3.2.10 Source Code .. 70

4 Data Discovery Bundle .. 71

4.1 Distributed Query Engine ... 71

4.1.1 Component Description ... 71

4.1.2 Main Improvements in Beta Version ... 71

4.1.3 Component Backlog ... 72

4.1.4 Functional Requirements ... 72

101093016 - PISTIS - HORIZON-CL4-2022-DATA-01-04

D2.3 - Data Management and Protection services - Beta version Page 7 of 144

4.1.5 Non-Functional Requirements ... 73

4.1.6 Component Architecture .. 73

4.1.7 Technology Background ... 74

4.1.8 Graphical User Interface .. 74

4.1.9 Developer Documentation ... 75

4.1.10 Source Code .. 75

5 Data Exchange Bundle .. 76

5.1 PISTIS Data Factory Connector ... 76

5.1.1 Component Description ... 76

5.1.2 Main Improvements in Beta Version ... 76

5.1.3 Component Backlog ... 77

5.1.4 Functional Requirements ... 78

5.1.5 Non-Functional Requirements ... 78

5.1.6 Component Architecture .. 78

5.1.7 Technology Background ... 80

5.1.8 Graphical User Interface .. 80

5.1.9 Developer Documentation ... 80

5.1.10 Source Code .. 80

5.2 Smart Contract Checker ... 81

5.2.1 Component Description ... 81

5.2.2 Main Improvements in Beta Version ... 81

5.2.3 Component Backlog ... 81

5.2.4 Functional Requirements ... 82

5.2.5 Non-Functional Requirements ... 83

5.2.6 Component Architecture .. 83

5.2.7 Technology Background ... 84

5.2.8 Graphical User Interface .. 84

5.2.9 Developer Documentation ... 84

5.2.10 Source Code .. 85

6 AI & Interoperability Repositories Bundle .. 86

6.1 PISTIS Models Repository ... 86

6.1.1 Component Description ... 86

6.1.2 Main Improvements in Beta Version ... 87

6.1.3 Component Backlog ... 87

101093016 - PISTIS - HORIZON-CL4-2022-DATA-01-04

D2.3 - Data Management and Protection services - Beta version Page 8 of 144

6.1.4 Functional Requirements ... 88

6.1.5 Non-Functional Requirements ... 88

6.1.6 Component Architecture .. 88

6.1.7 Technology Background ... 89

6.1.8 Graphical User Interface .. 89

6.1.9 Developer Documentation ... 92

6.1.10 Source Code .. 92

6.2 Data Factory ML Models Repository .. 92

6.2.1 Component Description ... 92

6.2.2 Main Improvements in Beta Version ... 92

6.2.3 Component Backlog ... 92

6.2.4 Functional Requirements ... 93

6.2.5 Non-Functional Requirements ... 93

6.2.6 Component Architecture .. 93

6.2.7 Technology Background ... 94

6.2.8 Graphical User Interface .. 94

6.2.9 Developer Documentation ... 95

6.2.10 Source Code .. 95

6.3 AI Model Editor .. 95

6.3.1 Component Description ... 95

6.3.2 Main Improvements in Beta Version ... 96

6.3.3 Component Backlog ... 96

6.3.4 Functional Requirements ... 96

6.3.5 Non-Functional Requirements ... 97

6.3.6 Component Architecture .. 97

6.3.7 Technology Background ... 98

6.3.8 Graphical User Interface .. 98

6.3.9 Developer Documentation ... 98

6.3.10 Source Code .. 99

7 Security, Trust & Privacy Preservation Bundle ... 99

7.1 Anonymizer .. 99

7.1.1 Component Description ... 99

7.1.2 Main Improvements in Beta Version ... 101

7.1.3 Component Backlog ... 102

101093016 - PISTIS - HORIZON-CL4-2022-DATA-01-04

D2.3 - Data Management and Protection services - Beta version Page 9 of 144

7.1.4 Functional Requirements ... 102

7.1.5 Non-Functional Requirements ... 103

7.1.6 Component Architecture .. 104

7.1.7 Technology Background ... 105

7.1.8 Graphical User Interface .. 111

7.1.9 Developer Documentation ... 115

7.1.10 Source Code .. 115

7.2 Lineage Tracker .. 115

7.2.1 Component Description ... 115

7.2.2 Main Improvements in Beta Version ... 116

7.2.3 Component Backlog ... 117

7.2.4 Functional Requirements ... 117

7.2.5 Non-Functional Requirements ... 117

7.2.6 Component Architecture .. 118

7.2.7 Technology Background ... 119

7.2.8 Graphical User Interface .. 120

7.2.9 Developer Documentation ... 121

7.2.10 Source Code .. 121

7.3 GDPR checker ... 121

7.3.1 Component Description ... 121

7.3.2 Main Improvements in Beta Version ... 122

7.3.3 Component Backlog ... 123

7.3.4 Functional Requirements ... 123

7.3.5 Non-Functional Requirements ... 124

7.3.6 Component Architecture .. 124

7.3.7 Technology Background ... 125

7.3.8 Graphical User Interface .. 125

7.3.9 Developer Documentation ... 125

7.3.10 Source Code .. 125

7.4 Searchable Encryption .. 126

7.4.1 Component Description ... 126

7.4.2 Main Improvements in Beta Version ... 126

7.4.3 Component Backlog ... 126

7.4.4 Functional Requirements ... 127

101093016 - PISTIS - HORIZON-CL4-2022-DATA-01-04

D2.3 - Data Management and Protection services - Beta version Page 10 of 144

7.4.5 Non-Functional Requirements ... 127

7.4.6 Component Architecture .. 127

7.4.7 Technology Background ... 128

7.4.8 Graphical User Interface .. 128

7.4.9 Developer Documentation ... 129

7.4.10 Source Code .. 129

7.5 Encryption/Decryption Engine ... 129

7.5.1 Component Description ... 129

7.5.2 Main Improvements in Beta Version ... 129

7.5.3 Component Backlog ... 130

7.5.4 Functional Requirements ... 130

7.5.5 Non-Functional Requirements ... 130

7.5.6 Component Architecture .. 131

7.5.7 Technology Background ... 131

7.5.8 Graphical User Interface .. 132

7.5.9 Developer Documentation ... 132

7.5.10 Source Code .. 132

7.6 Access Policy Editor .. 132

7.6.1 Component Description ... 132

7.6.2 Main Improvements in Beta Version ... 133

7.6.3 Component Backlog ... 134

7.6.4 Functional Requirements ... 135

7.6.5 Non-Functional Requirements ... 135

7.6.6 Component Architecture .. 136

7.6.7 Technology Background ... 137

7.6.8 Graphical User Interface .. 137

7.6.9 Developer Documentation ... 142

7.6.10 Source Code .. 143

8 Conclusions ... 144

101093016 - PISTIS - HORIZON-CL4-2022-DATA-01-04

D2.3 - Data Management and Protection services - Beta version Page 11 of 144

List of Figures

Figure 1: PISTIS Architecture .. 14

Figure 2. Data Check-In Sub-modules. ... 16

Figure 3: Batched Data Check-In Architecture ... 19

Figure 4: File upload GUI .. 20

Figure 5: FTP data upload GUI .. 21

Figure 6: Data fetching from API GUI ... 22

Figure 7: Streaming Data Check-In Architecture .. 24

Figure 8: Registering a Kafka Stream – Inserting Stream Descriptions 25

Figure 9: Registering a Kafka Stream – Stream Details .. 25

Figure 10: Data Transformation Component’s Internal Architecture 28

Figure 11: Data Transformation Component UI in beta version .. 30

Figure 12: Job Configurator Architecture ... 34

Figure 13: Workflow and Job DAGs .. 35

Figure 14: Service design principles approach 1 .. 35

Figure 15: Job Configurator GUI Beta version. ... 36

Figure 16: Data Check-In fields ... 37

Figure 17: Run id (JC GUI) ... 38

Figure 18: Analytics Engine Architecture ... 41

Figure 19: Analytics Engine GUI ... 42

Figure 20: Data Enrichment Internal Architecture ... 45

Figure 21: Display the dataset .. 46

Figure 22: Select the properties of the data model ... 47

Figure 23: Overview of the assessment result for a dataset ... 51

Figure 24: The quality measurement results for a single distribution of this dataset 52

Figure 25: Example content quality assessment results .. 53

Figure 26: Metadata Quality Assessment service internal architecture 53

Figure 27: Data Quality Assessment service internal architecture .. 54

Figure 28: Component’s Internal Architecture .. 57

Figure 29: Data Insights Generator Component UI in beta version ... 58

Figure 30: Data Catalogue’s Internal Architecture ... 62

Figure 31: A list of datasets with filters on the left-side .. 63

Figure 32: Presentation of a dataset and its associated metadata.. 64

Figure 33: Dataset detail page in the PISTIS Dataset Catalogue .. 65

Figure 34: Factory Data Storage Internal Architecture .. 69

Figure 35: Distributed Query Engine Internal Architecture ... 74

Figure 36: Searching for datasets using the GUI .. 75

Figure 37: PISTIS Factory Connector’s Internal Architecture – Files Transfer 79

Figure 38: PISTIS Factory Connector’s Internal Architecture – Files Transfer 80

Figure 39: Smart Contract Checker High Level Architecture ... 84

Figure 40: PISTIS Model Repository Internal Architecture .. 89

Figure 41: PISTIS Models Repository – Models Management ... 90

Figure 42: PISTIS Models Repository – Upload of New Artefact ... 90

101093016 - PISTIS - HORIZON-CL4-2022-DATA-01-04

D2.3 - Data Management and Protection services - Beta version Page 12 of 144

Figure 43: PISTIS Models Repository – Download/Delete an Artefact 91

Figure 44: PISTIS Models Repository – Delete confirmation ... 91

Figure 45: ML Model Repo Architecture .. 94

Figure 46: MinIO GUI .. 95

Figure 47: AI Model Editor Architecture .. 97

Figure 48: Jupyter Lab UI. ... 98

Figure 49: Component’s Internal Architecture .. 104

Figure 50: Initial Anonymiser Screen ... 111

Figure 51: Anonymiser Obfuscation Utilities ... 112

Figure 52: Obfuscation Anonymiser Preview ... 112

Figure 53: Anonymiser K-Anonymity ... 113

Figure 54: Anonymiser K-Anonymity Solutions .. 113

Figure 55: Preview of Dataset after K-Anonymity Solution is selected 114

Figure 56: Preview of a dataset after K-Anonymity has been selected with metrics for Risk of

Reidentification .. 114

Figure 57: Lineage Tracker Architecture Diagram .. 119

Figure 58: View Dataset Lineage .. 120

Figure 59: View Dataset Version Changes.. 121

Figure 60: GDPR Checker High Level Architecture ... 124

Figure 61: Searchable Encryption high-level Architecture ... 128

Figure 62: Encryption/Decryption Engine High Level Architecture 131

Figure 63: Access Policy Editor Internal Architecture .. 136

Figure 64: Listing of access policies during data asset injection phase and definition of new

exclusion access policy for organization’s users .. 137

Figure 65: Listing of access policies during data asset publication phase (the default access

policy) ... 138

Figure 66: Registration of a new access policy during data asset publication phase 138

Figure 67: Listing of PISTIS users within access policy editor .. 139

Figure 68: Create (or edit) a PISTIS user ... 139

Figure 69: Listing of registered access policies within the access policy editor 140

Figure 70: Registration of a new access policy within access policy editor based on organization

user ... 140

Figure 71: Registration of a new access policy within access policy editor based on user’s

organization attributes ... 141

Figure 72: Registration of a new access policy within access policy editor based on user’s

organization .. 141

Figure 73: Registration of a new access policy within access policy editor based on data asset’s

attributes .. 142

Figure 74: Registration of a new access policy within access policy editor based on time period

 .. 142

101093016 - PISTIS - HORIZON-CL4-2022-DATA-01-04

D2.3 - Data Management and Protection services - Beta version Page 13 of 144

Terms and Abbreviations

ABAC Attribute Based Access Control

ABE Attribute Based Encryption

ADB Asser Description Bundle

AI Artificial Intelligence

API Application Programming Interface

CF Collaborative filtering

CRUD Create, Read, Update, Delete

DCAT Data Catalogue Vocabulary

DLT Distributed Ledger Technology

DNN Deep neural networks

DoA Description of Action

DSE Dynamic Searchable Encryption

DVDs Data Value Dimensions

DVS Data Valuation Service

eIDAS2 electronic IDentification, Authentication and trust Services 2

FAIR Findable, Accessible, Interoperable, Reusable

FTP File Transfer Protocol

GDPR General Data protection Regulation

GNN Graph Neural Networks

HTTP HyperText Transfer Protocol

ID Identity

IDS International Data Spaces

IOTA Internet of Things Application

JSON JavaScript Object Notation

JWT JSON Web Token

kNN k-Nearest Neighbour

LSH Locality-Sensitive Hashing

ML Machine Learning

MQTT Message Queuing Telemetry Transport

MVP Minimum Viable Product

OIDC OpenID Connect

PROV Provenance

RBAC Role Based Access Control

RDF Resource Description Framework

REST Representational state transfer

SE Searchable Encryption

SQL Structured Query Language

SSI Self-Sovereign Identity

ToC Table of Contents

UUID Universal Unique Identifier

WP Work Package

XAI eXplainable AI

YAML Yet Another Modelling Language

101093016 - PISTIS - HORIZON-CL4-2022-DATA-01-04

D2.3 - Data Management and Protection services - Beta version Page 14 of 144

1 INTRODUCTION

The PISTIS project adopts an agile development methodology, progressing through two

iterations of design, implementation, and evaluation. In the initial phase, technical

requirements and user stories were gathered (D1.2), and relevant methods, technologies,

models, and specifications for addressing them were analysed (D2.1, D3.1). The initial

architecture of the PISTIS Platform—illustrating the individual components and their

interrelationships—was then defined in Deliverable D4.1. Following this, the first (Alpha)

version of the core PISTIS factory components, focusing on data discovery, management, and

protection, was presented in Deliverable D3.2.

This document builds on D3.2 and presents the subsequent Beta version of these components,

which have been refined according to the development plan (backlog). It accompanies the

implementation by detailing each component’s purpose, requirements, architecture,

technologies used, and user interface (where applicable). In addition, the document highlights

the enhancements made since the Alpha release and provides information about the

availability of source code and developer documentation. The components compose the Data

Management and Assessment, Data & Metadata Storage, Data Discovery, Data Exchange,

Security, Trust & Privacy Preservation and AI & Interoperability Repos bundles of the PISTIS

architecture shown in the Figure below.

Figure 1: PISTIS Architecture

101093016 - PISTIS - HORIZON-CL4-2022-DATA-01-04

D2.3 - Data Management and Protection services - Beta version Page 15 of 144

The Beta version of another set of PISTIS components, belonging to the Data Monetisation,

Transaction Services, and Ledgers bundles, is presented in Deliverable D3.3.

Both sets of components will be integrated into the Beta release of the PISTIS Platform (D4.2),

marking the completion of the second design and development iteration. This will be followed

by the final (Version 1.0) iteration of the development process.

The source code for the PISTIS components is maintained in the project’s GitHub repository.

Access can be granted upon request:

https://github.com/orgs/PISTIS-Platform/

1.1 DOCUMENT STRUCTURE

The document is structured as follows:

Section 1 is the introduction and this document structure description.

Sections 2 - 7 describe the different bundles and present details on the different components

using the same structure of the subsections:

- Component Description

- Main Improvements in Beta Version

- Component Backlog

- Functional Requirements

- Non-Functional Requirements

- Component Architecture

- Technology Background

- Graphical User Interface

- Developer Documentation

- Source Code.

Finally, Section 8 concludes the document.

https://github.com/orgs/PISTIS-Platform/

101093016 - PISTIS - HORIZON-CL4-2022-DATA-01-04

D2.3 - Data Management and Protection services - Beta version Page 16 of 144

2 DATA MANAGEMENT AND ASSESSMENT BUNDLE

The Data Management and Assessment bundle is responsible for the collection of data from

existing repositories available to an organisation, the refinement, transformation, and

improvement of data, judging also their quality and providing services to improve them and

make them interoperable.

This bundle consists of the following components:

• Data Check-In

• Data Transformation

• Job Configurator

• Analytics Engine

• Data Enrichment

• Data Quality Assessment

• Data Insights Generator

These are presented in the following sub-sections.

2.1 DATA CHECK-IN

Data Check-In enables support for data sources that will supply data for the solution workflow,

as data sources can come in a variety of forms (repositories, data streaming flows, and so on).

The Alpha version of Data Check-In presented in the deliverable D2.2 was supporting only

integration of batched data. In the Beta version the batched data check-in got further

improvements, which are presented in the next sub-section 2.1.1. In addition to that, a new

Data Check-In sub-component for streaming data was added. It is presented in the sub-section

2.1.2.

Figure 2 depicts an overview of the data injection component, highlighting the two primary

submodules that handle batch (sub-section 2.1.1) and streaming data (sub-section 2.1.2).

Figure 2. Data Check-In Sub-modules.

101093016 - PISTIS - HORIZON-CL4-2022-DATA-01-04

D2.3 - Data Management and Protection services - Beta version Page 17 of 144

2.1.1 BATCHED DATA CHECK-IN

2.1.1.1 Component Description

Batched Data Check-In serves as input for the whole data workflow in the PISTIS platform

allowing several ways for data ingestion which must include the followings:

• File upload

• FTP Server

• API

Batched Data Check-In offering in terms of functionalities is detailed below:

• UploadData: This functionality should allow the end user to provide a data file to be

stored in a server to be consumed by the subsequent data processing workflow

defined in the PISTIS platform. Some basic verifications could be carried out in order

to check some requirements regarding the data file provided (e.g. size limits, data

formats, etc.).

• GetDataFromFTP: In case the data to be ingested by the workflow is stored in an FTP

server, a method will be provided to retrieve that data. This method should be called

providing all the information needed to get access to the data (I.e. endpoint, path to

the file, filename, required credentials, etc.).

• GetDataFromAPI: In this case, the data is retrieved from a defined API or from other

Data Space Connectors. The connectors should be compatible with GAIA-X and IDS. It

will be required, as in the previous case, to get all the details (as well as credentials

when necessary) needed in order to get access to the required data source.

2.1.1.2 Main Improvements in Beta Version

The following improvements have been introduced in beta version:

• Extended file upload formats include CSV, TSV, XML, XLSX, JSON, and Parquet.

• Automatic dataset encoding identification and export to UTF-8 format. This feature

was necessary for certain of our pilots who deal with datasets encoded with Windows-

1253 (Greek).

• Get data from FTP Server: To connect to an FTP server via FTP data upload, give the

following information:

o The IP address or hostname of your FTP server might be 10.1.1.58 or

ftp.company_name.com.

o Port number: The TCP port that your FTP server listens on. Normally, this would

be port 21.

o Login credentials: This contains your login and password. This information will

be used to authenticate users on your FTP server.

o File path refers to the relative location where files are stored on an FTP server.

• Get data from API: The fundamental principles of employing an HTTP API in PISTIS

context are straightforward:

101093016 - PISTIS - HORIZON-CL4-2022-DATA-01-04

D2.3 - Data Management and Protection services - Beta version Page 18 of 144

• Make an HTTP request to the API's URLs, perhaps supplying authentication data

(such an API key) to demonstrate our authorisation.

• Get back the data

• Store physically the data using the factory data storage component.

2.1.1.3 Component Backlog

This section provides the full set of features that belong to the backlog of the component.

ID #

Use Case
Backlog
Priority1

Acceptance
Criteria

Status2 WP1
User

Stories As a <Role> I want to <Action>,
so that
<Reason>

UC_01 Data Provider
Upload a file into
Pistis ecosystem.

Have data
available in
Pistis
ecosystem

Alpha

Data stored
properly in
Factory Data
Storage.

Done PISTIS.
OUS.0

1

UC_02 Data Provider
Inject Data coming
from an FTP Server.

Have data
available in
Pistis
ecosystem

Beta

Data stored
properly in
Factory Data
Storage.

Done PISTIS.
OUS.0

1

UC_03 Data Provider
Inject Data coming
from a Data Space
(API)

Have data
available in
Pistis
ecosystem

Beta

Data stored
properly in
Factory Data
Storage.

Done PISTIS.
OUS.0

1

UC_04 Data Provider
Manage Data Check-
In from GUI

Have data
available in
Pistis
ecosystem

Beta

Data stored
properly in
Factory Data
Storage.

Done PISTIS.
OUS.0

1

2.1.1.4 Functional Requirements

This section provides the functional requirements of the component.

ID Description
Related Use

Cases
Comments

FR_01 PISTIS supports data
injection/registration from
different data source type.

UC_01, UC_02,
UC_03, UC_04

PISTIS platform must support
multiple type of data sources such as
FTP, HTTP APIs, SFTP, DB connections,
etc.

FR_02 PISTIS supports various format
and description languages of
metadata.

UC_01, UC_02,
UC_03, UC_04

PISTIS platform must support various
format (JSON, XML, RDF, etc.) and
various description languages or
standards or ontologies for the
metadata.

2.1.1.5 Non-Functional Requirements

The following table presents the non-functional requirements of the component (if any).

Requirement
Sub-category

Id Description (Detailed description of the requirement)

Security NFR1 PISTIS ensures that only authorised users can register datasets.

1 Priority based on the releases: Alpha / Beta / v1.00
2 Upcoming / In Progress / Done (delivered in alpha/beta/v1.00) / Obsolete

101093016 - PISTIS - HORIZON-CL4-2022-DATA-01-04

D2.3 - Data Management and Protection services - Beta version Page 19 of 144

Compatibility
NFR2 The component must be able to accept the input data with Greek

encoding as Windows-1253.

2.1.1.6 Component Architecture

The Data Validation and Checking Module (DACM) and the Data Injection Module (DIM) are

the two primary modules of the Data Check-In component, as depicted in Figure 3, which also

displays the internal architecture of the component.

The business logic found in the DACM will enable:

1) Perform some basic verifications to confirm that the data file requirements—such as

size limitations and data formats—are met, and

2) Verify that all the information required to ensure access to the data source has been

supplied, including any access credentials that may be required.

After the DACM has verified and guaranteed access to the data, the DIM will be responsible

for ingesting them. DIM will include dedicated submodules for every kind of ingestion needed

by PISTIS, including FTP, file uploads, and API retrieval.

 Figure 3: Batched Data Check-In Architecture

2.1.1.7 Technology Background

Batched Data Check-In is built on Python and uses commonly used data transport modules

such as HTTP, FTP, and request, among others.

2.1.1.8 Graphical User Interface

The Data Check-In GUI has been included into the Job Configurator GUI for the Beta version.

A screenshot of the File Upload GUI is given in Figure 4.

101093016 - PISTIS - HORIZON-CL4-2022-DATA-01-04

D2.3 - Data Management and Protection services - Beta version Page 20 of 144

Figure 4: File upload GUI

Figure 5 depicts the GUI that supports data ingestion from an FTP server.

101093016 - PISTIS - HORIZON-CL4-2022-DATA-01-04

D2.3 - Data Management and Protection services - Beta version Page 21 of 144

Figure 5: FTP data upload GUI

Finally, Figure 6 illustrates the GUI for obtaining data from API.

101093016 - PISTIS - HORIZON-CL4-2022-DATA-01-04

D2.3 - Data Management and Protection services - Beta version Page 22 of 144

Figure 6: Data fetching from API GUI

2.1.1.9 Developer Documentation

The developer documentation for the Batched Data Check-In component may be accessed on

the official PISTIS project documentation site at the following link: https://docs.pistis-

market.eu/developers/data-check-in/data-check-in

2.1.1.10 Source Code

The source code developed for the Batched Data Check-In component is currently stored

under an internal repository in ATOS premises until the license to be applied to it is decided.

The component’s UI (frontend) is part of the platform-frontend repository and its code is

maintained in GitHub under the PISTIS project and can be accessed via the respective link:

https://github.com/PISTIS-Platform/platform-frontend

https://docs.pistis-market.eu/developers/data-check-in/data-check-in
https://docs.pistis-market.eu/developers/data-check-in/data-check-in
https://github.com/PISTIS-Platform/platform-frontend

101093016 - PISTIS - HORIZON-CL4-2022-DATA-01-04

D2.3 - Data Management and Protection services - Beta version Page 23 of 144

2.1.2 STREAMING DATA CHECK-IN

2.1.2.1 Component Description

The Streaming Data Check-in enables Data Provider to register their data streams to their

PISTIS Data Factory which will allow them to make them available to prospective Data

Consumers who aim to get access to these streams.

The Streaming data check-in functionality is supporting Kafka streams. This functionality

allows users to send data to a Kafka server that is running in the Data Factory of each user and

that then holds the data that data consumers might want to get access to.

As such, this component, as part of the overall Data Check-In functionality is offering the

following functionality, which has been introduced conceptually in the Alpha version:

• GetDataFromSubscription: Create a Kafka topic for each streaming dataset, allowing

Data Providers to bring into their Data Factories data from this kind of data source. By

means of these, data can be consumed following a given criteria (e.g. defining a time

window, a data limit, etc.) and then set for its processing.

2.1.2.2 Main Improvements in Beta Version

This is a component that is introduced for the first time in the beta version.

2.1.2.3 Component Backlog

This section provides the full set of features that belong to the backlog of the component.

ID

Use Case
Backlog
Priority3

Acceptance
Criteria

Status4 WP1 User
Stories

As a
<Role>

I want to
<Action>,

so that <Reason>

UC_05
Data
Provider

Inject Data
coming from
subscription
(kafka, MQTT)

Have data available in
Pistis ecosystem

Beta

Data stored
properly in
Factory
Data
Storage.

Done PISTIS.OUS.01

UC_06
Data
Provider

Manage Data
Check-In from
GUI

Have data available in
Pistis ecosystem

Beta

Data stored
properly in
Factory
Data
Storage.

Done PISTIS.OUS.01

2.1.2.4 Functional Requirements

This section provides the functional requirements of the component.

ID Description Related Use Cases Comments

FR_01 PISTIS supports data
injection/registration
from different data
source type.

UC_01, UC_02, UC_03,
UC_04

PISTIS platform must support multiple
type of data sources such as FTP, HTTP
APIs, SFTP, DB connections, etc.

3 Priority based on the releases: Alpha / Beta / v1.00
4 Upcoming / In Progress / Done (delivered in alpha/beta/v1.00) / Obsolete

101093016 - PISTIS - HORIZON-CL4-2022-DATA-01-04

D2.3 - Data Management and Protection services - Beta version Page 24 of 144

2.1.2.5 Non-Functional Requirements

The following table presents the non-functional requirements of the component (if any).

Requirement
Sub-category

Id Description (Detailed description of the requirement)

Security NFR1 PISTIS ensures that only authorised users can register datasets.

2.1.2.6 Component Architecture

The Streaming Data Check-In component is responsible for creating streaming data pipelines

and transferring streaming data using Kafka. The component is responsible for registering the

data stream where the user (provider) will be able to send (produce) messages to a Kafka topic

using the given user credentials for authentication.

The Data Provider Service accepts the data stream information, requests the factory

information from the Data Factory storage component such as the factory name and it is

responsible for constructing the streaming metadata to be registered in Factory Catalogue

component using the internal module of component’s Metadata Repository Service.

The Kafka service is responsible for creating the Kafka topic and generating user credentials.

These credentials, along with the topic information, are returned to the Factory UI

component. The provider user will use them to authenticate with Kafka and send messages to

the specified topic.

Figure 7: Streaming Data Check-In Architecture

101093016 - PISTIS - HORIZON-CL4-2022-DATA-01-04

D2.3 - Data Management and Protection services - Beta version Page 25 of 144

2.1.2.7 Technology Background

The main technology used for the Component is Apache Kafka.

2.1.2.8 Graphical User Interface

The UI of this component is shown in the following figures. The Data Provider initially provides

a title for the streaming data and details about what this contains.

Figure 8: Registering a Kafka Stream – Inserting Stream Descriptions

Following this a Kafka topic is created for the specific Dataset and the system provides to the

user (Data Provider) the topic name, the broker addresses and the credentials he/she should

use so that he/she can send over the stream to the Kafka hosted in his/her Data Factory (as

shown in the following figure). Once this is done, the Data Factory Kafka is collecting the

streamed data.

Figure 9: Registering a Kafka Stream – Stream Details

101093016 - PISTIS - HORIZON-CL4-2022-DATA-01-04

D2.3 - Data Management and Protection services - Beta version Page 26 of 144

2.1.2.9 Developer Documentation

The developer documentation for the Streaming Data Check-In component may be accessed

on the official PISTIS project documentation site at the following link: https://docs.pistis-

market.eu/developers/streaming-data/introduction

2.1.2.10 Source Code

The source code developed for the Streaming Data Check-In is maintained in GitHub under

the PISTIS project and can be accessed via the respective link: https://github.com/PISTIS-

Platform/components-monorepo for the backend and, https://github.com/PISTIS-

Platform/platform-frontend/ for the Data Factory UI.

2.2 DATA TRANSFORMATION

2.2.1 COMPONENT DESCRIPTION
Data transformation component aims at providing the possibility of performing some

preprocessing tasks on the datasets to be handled by the PISTIS platform. These

transformations can be very useful in order to improve the quality of the dataset, handling

some aspects of the dataset that are commonly considered to diminish its value (e.g. missing

values, wrong values, unformatted strings, etc.).

In order to perform that dataset preprocessing, a set of transformations can be defined in

order to be applied over the dataset, setting up the transformation to apply, some detailed

settings depending on the given transformation to apply, some filtering on the fields or

registries to be transformed, etc.

2.2.2 MAIN IMPROVEMENTS IN BETA VERSION

The following improvements have been introduced in beta version:

• Data transformation implementation template has been refactored.

• CSV file separator identification has been improved.

• A new version of the GUI has been implemented with the following features:

o Improved UX: allowing the definition of transformations with no need to write

any configuration file, just adding different transformations from their own GUI

cards.

o Fully automatic card generation approach: The GUI gets the current version of

the transformation catalogue and automatically generates cards for each

transformation available, including the input parameters defined for each

transformation.

o Improved composite transformation JSON generator: The GUI allows the

addition (and removal) of different transformations to a transformation

configuration JSON and its visualization in real time.

https://docs.pistis-market.eu/developers/streaming-data/introduction
https://docs.pistis-market.eu/developers/streaming-data/introduction
https://github.com/PISTIS-Platform/components-monorepo
https://github.com/PISTIS-Platform/components-monorepo
https://github.com/PISTIS-Platform/platform-frontend/
https://github.com/PISTIS-Platform/platform-frontend/

101093016 - PISTIS - HORIZON-CL4-2022-DATA-01-04

D2.3 - Data Management and Protection services - Beta version Page 27 of 144

o Transformation testing is still available: allowing the execution of

transformations on a given dataset for testing purposes

• New transformations have been implemented:

o Data Normalization

o Column removal

o Outlier Management

2.2.3 COMPONENT BACKLOG
This section provides the full set of features that belong to the backlog of the component.

ID #

Use Case
Backlog
Priority

Acceptance Criteria

Status WP1
User
Stories As a

<Role>
I want to <Action>,

so that
<Reason>

UC_01
Data
consumer

Get a list of available
transformations to
perform on PISTIS
platform

I can choose
what
transformat
ion to use

Alpha

Get a list with all the
transformations
offered by the PISTSI
platform

Done PISTIS.
OUS.0

3

UC_02
Data
consumer

Perform a PISTIS
offered
transformation on a
dataset using the
PISTIS platform

I can get my
dataset
modified

Alpha

The dataset has been
updated following
the transformation
requested

Done PISTIS.
OUS.0

3

UC_03
Data
Provider

Manage Data
Transformations from
GUI

Have data
available in
Pistis
ecosystem

v1.00

Data stored properly
in Factory Data
Storage after
applying
transformations
defined by the user.

Upco
ming

PISTIS.
OUS.0

3

UC_04
Data
consumer

Get an improved set
of transformations
available

I can apply a
wider set of
transformat
ions to my
dataset

Beta

The catalogue of
available
transformations in
beta version is bigger
than the catalogue in
alpha version

Done PISTIS.
OUS.0
3

2.2.4 FUNCTIONAL REQUIREMENTS
This section provides the functional requirements of the component.

ID Description
Related

Use Cases
Comments

FR_01 PISTIS provides a definition of the
data transformations supported

US_01,
US_03

The component should provide a
formal definition of the data
transformations supported along
with the format the request
should be formatted

FR_02 PISTIS allows the transformation
of a given dataset according to
the definition of the
transformation requested

US_02,
US_03

101093016 - PISTIS - HORIZON-CL4-2022-DATA-01-04

D2.3 - Data Management and Protection services - Beta version Page 28 of 144

2.2.5 NON-FUNCTIONAL REQUIREMENTS
The following table presents the non-functional requirements of the component (if any).

Requirement
Sub-category

Id Description (Detailed description of the requirement)

Security NFR1 PISTIS ensures that only authorised user can transform datasets.

Compatibility
NFR2 The component must be able to accept the input data in the CSV format

(Pandas DataFrame compliant).

Compatibility
NFR3 Component transformation definition input must be compliant with the

json schema of the transformations supported.

2.2.6 COMPONENT ARCHITECTURE
As it can be seen in the following diagram, the component consists of two main logic modules:

the first module is responsible for checking the validity of the transformations defined in the

API call to be processed and the second module is responsible for the application of the logic

of the transformations. The second module is the one responsible for loading the dataset

passed as input and perform the transformation requested.

To that end, the component transformations have been designed in a modular and isolated

way, defining a transformation template that ease the development of new transformations

(just defining the schema of its required parameters and the logic of the transformation itself).

Each one of these implemented transformations are scanned on deployment time and added

automatically to the component transformation catalogue offered via GET API call.

Figure 10: Data Transformation Component’s Internal Architecture

2.2.7 TECHNOLOGY BACKGROUND
Data transformation will be based on Python, exploiting commonly used frameworks for data

handling such as pandas, which ease the loading and processing of datasets by means of

optimized data structures such as DataFrames (an optimized python-based data structure to

handle datasets). Current version supports available data transformations listing (including:

101093016 - PISTIS - HORIZON-CL4-2022-DATA-01-04

D2.3 - Data Management and Protection services - Beta version Page 29 of 144

string replacement, missing values replacement using fixed or statistical values or missing

values removal) and its application.

2.2.8 GRAPHICAL USER INTERFACE
The UI of this component highly depends on the transformations defined. In case a dynamic

GUI can be implemented, this GUI should consume the response from the GET API call in order

to know which transformations are defined in the component and the different inputs that

each transformation will require. In beta version of the GUI, this is already supported. Current

version of the GUI offers, on the left side of the screen the data transformation catalogue

displayed as cards, each one with its own title and input parameters. On the right side of the

screen we can see a real-time JSON representation of the designed transformation on the top

and the logic required to apply the designed transformation to a local file at the bottom. These

three sections can be seen in the following screenshot:

101093016 - PISTIS - HORIZON-CL4-2022-DATA-01-04

D2.3 - Data Management and Protection services - Beta version Page 30 of 144

Figure 11: Data Transformation Component UI in beta version

2.2.9 DEVELOPER DOCUMENTATION

Updated documentation for this component can be found at: https://docs.pistis-

market.eu/developers/data-transformation/data-transformation

2.2.10 SOURCE CODE
The source code developed for the Data Transformation component is currently stored under

an internal repository in ATOS premises until the license to be applied to it is decided.

https://docs.pistis-market.eu/developers/data-transformation/data-transformation
https://docs.pistis-market.eu/developers/data-transformation/data-transformation

101093016 - PISTIS - HORIZON-CL4-2022-DATA-01-04

D2.3 - Data Management and Protection services - Beta version Page 31 of 144

The component’s UI (frontend) is part of the platform-frontend repository and its code is

maintained in GitHub under the PISTIS project and can be accessed via the respective link:

https://github.com/PISTIS-Platform/platform-frontend

https://github.com/PISTIS-Platform/platform-frontend

101093016 - PISTIS - HORIZON-CL4-2022-DATA-01-04

D2.3 - Data Management and Protection services - Beta version Page 32 of 144

2.3 JOB CONFIGURATOR

2.3.1 COMPONENT DESCRIPTION
The Job Configurator oversees defining templates to support data pipeline jobs, as well as

orchestrating them through the development of complicated workflows.

Job Configurator provides a high-level format for defining workflow and jobs to avoid only

supporting those formats accepted by the workflow orchestration tool, which is Apache

Airflow.

2.3.2 MAIN IMPROVEMENTS IN BETA VERSION

The following improvements have been introduced in beta version:

• GDPR Compliance Checking integration: During Check-In, the Job Configurator (JC) calls

the GDPR Checker API and provides a URI. After retrieving the dataset from the Data

Storage using that URI, the GDPR Checker will do the compliance checks and deliver

any warnings or suggestions.

• Workflows execution scheduling: The purpose is to enable the periodic execution of

workflows, which will allow for the periodic injection of batches of data connected

with the same dataset. To that aim, two new fields have been added to the JC GUI,

enabling the user to choose a precise workflow run time as well as a periodicity, which

is now limited to three pre-sets: hourly, daily, or monthly.

• Dataset Encryption integration: To specifically indicate that the dataset should be

encrypted and kept encrypted in the factory data storage, the user can choose a flag

at the JC GUI level.

• Semantic Enrichment integration: During the check-in, after establishing the checking

parameters, the JC displays a tiny slice of data (for example, 10 rows) and the Semantic

Enrichment UI appears. The user makes mappings and stores them as a configuration.

This configuration is then made accessible to the JC, who will run it in the end as part

of the entire flow.

• Policy Editor integration: The default policy is provided once the dataset has been

injected.

• Factory Catalogue integration: Data and Metadata registration.

• Factory Data Storage integration: Datasets storage.

• Linage Tracker integration: Once the dataset has been altered for a specific job during

workflow execution to maintain lineage tracker traceability, it will be updated to create

a new data distribution.

• IAM: Integration with Keycloak enables security.

• A new version of the GUI has been implemented with the following features:

o Drag and Drop approach to define workflows as composition of services.

o New flag to select dataset encryption.

o New field to select a specific workflow run time.

o New combobox added with a set of pre-sets (hourly, daily and monthly) to

setup periodic workflow executions.

101093016 - PISTIS - HORIZON-CL4-2022-DATA-01-04

D2.3 - Data Management and Protection services - Beta version Page 33 of 144

o New graphical sections for each service chosen in the workflow to complete

input parameters.

2.3.3 COMPONENT BACKLOG
This section provides the full set of features that belong to the backlog of the component.

ID #
Use Case

Backlog
Priority

Acceptance
Criteria

Status WP1 User
Stories

As a
<Role>

I want to
<Action>,

so that <Reason>

UC_01
Data
Provid
er

Define a data
pipeline
related Job

Support data check-
in, data
transformation and
analytics insights
tasks

Alpha
Job Template
as Airflow
DAG

Done PISTIS.SOUS.01,

PISTIS.SOUS.02,

PISTIS.SOUS.03

UC_02
Data
Provid
er

Define a
workflow
because of
composing
different jobs

Support data pipeline Alpha
Workflow
template as
Airflow DAG

Done PISTIS.SOUS.01,

PISTIS.SOUS.02,

PISTIS.SOUS.03

UC_03
Data
Provid
er

Define and
run a
workflow
from a GUI

Support data pipeline Beta

DAG
associated to
workflow
definition
instantiated
and executed
properly over
Apache
Airflow.

Done PISTIS.SOUS.01,

PISTIS.SOUS.02,

PISTIS.SOUS.03

2.3.4 FUNCTIONAL REQUIREMENTS
This section provides the functional requirements of the component.

ID Description
Related Use

Cases
Comments

FR_01 Provide support to define and execute
Jobs templates to support data
pipeline related tasks.

UC_01

FR_02 Provide support to orchestrate jobs to
support data pipelines.

UC_02

2.3.5 NON-FUNCTIONAL REQUIREMENTS
The following table presents the non-functional requirements of the component (if any).

Requirement
Sub-category

Id Description (Detailed description of the requirement)

Security NFR1 PISTIS ensures that only authorised user can transform datasets.

Compatibility
NFR2 The component must be able to accept the input data in the following

formats: CSV, TSV, XML, XLSX, JSON and Parquet.

101093016 - PISTIS - HORIZON-CL4-2022-DATA-01-04

D2.3 - Data Management and Protection services - Beta version Page 34 of 144

2.3.6 COMPONENT ARCHITECTURE

Figure 12 illustrates the internal architecture of the Job Configurator, which is primarily based

on the use of Apache Airflow, namely on two directed acyclic graphs, or DAGs: a) Workflow

DAG (WDAG) and b) Job DAG (JDAG).

Figure 12: Job Configurator Architecture

The workflow execution is carried out via the WDAG, whose internal structure is depicted in

Figure 13. Like the WDAG, the JDAG oversees carrying out a job or component in the context

of PISTIS. Figure 13 illustrates the Job Dag's task-based organizational structure.

Specifically, the internal flow of the WDAG would be as follows:

1) Get the current Job from the workflow definition,

2) Resolve the mappings defined over the current job,

3) Trigger the Job DAG using the current job values,

4) Finally, if there are jobs pending, return to point 1), otherwise stop the workflow

execution.

If we now focus on the Job DAG, its internal flow will be as follows:

1) Retrieve the data, using the required information from the data source.

2) Then, invoke the service endpoint specified in the job definition.

3) Check the storage policy and save the data response from point 2) in the Factory Data

Storage or Memory as specified.

4) Return control to Workflow DAG.

101093016 - PISTIS - HORIZON-CL4-2022-DATA-01-04

D2.3 - Data Management and Protection services - Beta version Page 35 of 144

Figure 13: Workflow and Job DAGs

Finally, it is important to highlight that any service potentially orchestratable using the Job

Configurator should satisfy the design principles shown in Figure 14.

Figure 14: Service design principles approach 1

The chosen by the consortium format for working with data sources at the workflow level in

the Alpha version of the component was CSV.

101093016 - PISTIS - HORIZON-CL4-2022-DATA-01-04

D2.3 - Data Management and Protection services - Beta version Page 36 of 144

For the Beta version, the Job Configurator will be based on the selection and execution of

services that support design principles described in Figure 14, extended the set of formats

supported regarding version Alpha to: CSV, TSV, XML, XLSX, JSON and Parquet.

2.3.7 TECHNOLOGY BACKGROUND
The main technology used for the Component is Apache Airflow.

2.3.8 GRAPHICAL USER INTERFACE

The UI definition for the Job Configurator has been included within the Data Pipeline UI

bundle. The Job Configurator UI has been built on the idea of easily creating a workflow of

jobs by dragging and dropping services and linking them to the next. Initially, the user begins

with an empty panel named “Workflow Representation” onto which the user drags a series of

services displayed just left in other panel named “Services Available”, as illustrated in Figure

15.

When a service is moved to the panel, either by selecting it or situating itself on it, a new panel

at the bottom appears dynamically with the appropriate fields whose contents must be

supplied for the service to run correctly. Figure 16 is an example of this using the data check-

in service.

In addition to the composition and service instantiation parts, the UI will include a button for

launching the workflow once it has been defined.

Figure 15: Job Configurator GUI Beta version.

When a service is moved to the panel, either by selecting it or situating itself on it, a new panel

at the bottom appears dynamically with the appropriate fields whose contents must be

101093016 - PISTIS - HORIZON-CL4-2022-DATA-01-04

D2.3 - Data Management and Protection services - Beta version Page 37 of 144

supplied for the service to run correctly. Figure 16 Figure 16is an example of this using the

data check-in service.

In addition to the composition and service instantiation parts, the UI will include a button for

launching the workflow once it has been defined.

Figure 16: Data Check-In fields

Lastly, a run_id is supplied at the GUI's bottom to monitor the workflow's execution in real

time and track its progress as shown in Figure 17.

101093016 - PISTIS - HORIZON-CL4-2022-DATA-01-04

D2.3 - Data Management and Protection services - Beta version Page 38 of 144

Figure 17: Run id (JC GUI)

Developer Documentation

The developer documentation for the Job Configurator component may be accessed on the

official PISTIS project documentation site at the following link: https://docs.pistis-

market.eu/developers/job-configurator/job-configurator

2.3.9 SOURCE CODE

The source code developed for the Job Configurator component is currently stored under an

internal repository in ATOS premises until the license to be applied to it is decided.

https://docs.pistis-market.eu/developers/job-configurator/job-configurator
https://docs.pistis-market.eu/developers/job-configurator/job-configurator

101093016 - PISTIS - HORIZON-CL4-2022-DATA-01-04

D2.3 - Data Management and Protection services - Beta version Page 39 of 144

The component’s UI (frontend) is part of the platform-frontend repository and its code is

maintained in GitHub under the PISTIS project and can be accessed via the respective link:

https://github.com/PISTIS-Platform/platform-frontend

2.4 ANALYTICS ENGINE

2.4.1 COMPONENT DESCRIPTION

In order to run ML/DL analytics pipelines and transform the primary data artefacts into

insights, the Analytics Engine component can be automatically deployed to and self-hosted in

computational resources that the user selects. This allows the trading of derivative data

assets, such as the analysis's outputs. The engine could be integrated with the ML Model

Registry to support a collection of pretrained AI models for various domains, which the PISTIS

Data Consumers can utilize to expedite the creation of their AI pipelines.

Furthermore, the presence of an analytics engine will enable other modules of the overall

PISTIS environment to benefit from its functionalities, such as enabling automatic data

transformations, accommodating ML-based anonymisation activities, and running analyses

relevant to the PISTIS market, such as trend identifications, predictions, and so on.

2.4.2 MAIN IMPROVEMENTS IN BETA VERSION

The following improvements have been introduced in beta version:

• ML Recipes enabled to quickly develop high-quality models and deploy them to

production.

2.4.3 COMPONENT BACKLOG
This section provides the full set of features that belong to the backlog of the component.

ID #
Use Case

Backlog
Priority

Acceptance
Criteria

Status WP1
User

Stories As a <Role> I want to <Action>, so that <Reason>

UC_01 Data Consumer

Generate an

analytics playground

custom deployment

instruction

Deploy a
playground
instance

Alpha
Check
deployment
file

Done PISTIS.
OUS.0

3

UC_02 Data Consumer
Run some analytics

Run analytics Beta
Enabling
playground
ecosystem

Done PISTIS.
OUS.0

3

UC_03 Data Consumer
Train an analytics
model

Create a new AI
Model

Beta
Check AI
Model

Done PISTIS.
OUS.0

3

UC_04 Data Consumer
Visualize analytics
results

Have a visual
analysis of the
results

V1.00

Access to
graphs
associated
with the

Upcom
ing

PISTIS.
OUS.0

3

https://github.com/PISTIS-Platform/platform-frontend

101093016 - PISTIS - HORIZON-CL4-2022-DATA-01-04

D2.3 - Data Management and Protection services - Beta version Page 40 of 144

analytics
results

2.4.4 FUNCTIONAL REQUIREMENTS
This section provides the functional requirements of the component.

ID Description
Related Use

Cases
Comments

FR_01 Manage the ML lifecycle UC1, UC2, UC3,
UC4

2.4.5 NON-FUNCTIONAL REQUIREMENTS
The following table presents the non-functional requirements of the component (if any).

Requirement
Sub-category

Id Description (Detailed description of the requirement)

Security NFR1 PISTIS ensures that only authorised user can analyse datasets.

2.4.6 COMPONENT ARCHITECTURE

The analytics engine component’s internal architecture is composed of an integration of

different technologies, including PostgreSQL and MLFlow. By means of this, we can offer a set

of functionalities that rely on the modules that are part of the final combination of

technologies provided by the component. These modules include:

• Tracking module: Allows to keep track of the different metrics and objects defined by

the end user on each experiment.

• The Artefacts Management module: Allows the storage of objects tracked on the

experiments.

• Playground UI module: Offers a UI to interact with the component playground.

• Notebook module: Lets the end user to view and execute Jupyter notebooks.

• ML Pipeline Engine module: Is the module responsible for the execution of ML

pipelines.

• ML Pipeline Definition module: Allows the definition of ML pipelines (in this case

named as MLFlow recipes)

101093016 - PISTIS - HORIZON-CL4-2022-DATA-01-04

D2.3 - Data Management and Protection services - Beta version Page 41 of 144

Figure 18: Analytics Engine Architecture

2.4.7 TECHNOLOGY BACKGROUND
The main technology used for the Component is MLFLow and PostgreSQL.

2.4.8 GRAPHICAL USER INTERFACE

This component is powered primarily by MLFlow, which provides a proper GUI for managing

the different experiments created in order to perform different analytics on the data, by

means of tracking both artefacts and metrics resultant from these experiments. This tracking

allows the creation and management of those experiments as well as the visualization of the

different executions carried out in them, showing all the relevant values identified (and

tracked) by the end user. This allows to see the evolution of the different outcomes of an

experiment in accordance with the different inputs generated, offering the end user access to

all the tracked artefacts that lead to that output.

Figure 19 shows the main screen of the component for experiment management, where the

different experiments generated will be listed out.

101093016 - PISTIS - HORIZON-CL4-2022-DATA-01-04

D2.3 - Data Management and Protection services - Beta version Page 42 of 144

Figure 19: Analytics Engine GUI

2.4.9 DEVELOPER DOCUMENTATION
Since MLFlow, a third-party technology, forms the basis of the Analytics Engine component,

the component's documentation is publicly accessible at

https://mlflow.org/docs/1.30.0/index.html.

2.4.10 SOURCE CODE

The Analytics Engine component is based on 3rd party technology called MLFlow whose open-

source repository is accessible at https://github.com/jupyterlab/jupyterlab.

2.5 DATA ENRICHMENT

2.5.1 COMPONENT DESCRIPTION

The data enrichment component in PISTIS is part of the Data Ingestion and Transformation

module located within an organization. This component, like the data transformation

component, enhances available data assets to increase their trading value. Data enrichment

typically involves harmonizing data using additional sources, combining various formats and

naming conventions into a standardized format for analysis. The main goal of this module in

PISTIS is to convert a raw dataset file into a structured dataset that aligns with specific domain

data models. This process allows users to upload raw datasets as files, transforming them into

PISTIS datasets for availability in the Marketplace. The module supports the parsing and

transformation of CSV, TXT, JSON, and XLS files.

It consists of a frontend and backend: the backend handles file parsing and provides access to

PISTIS Data Model properties, while the frontend offers an interface for users to view datasets

https://mlflow.org/docs/1.30.0/index.html
https://github.com/jupyterlab/jupyterlab

101093016 - PISTIS - HORIZON-CL4-2022-DATA-01-04

D2.3 - Data Management and Protection services - Beta version Page 43 of 144

and select suitable properties. Once a user selects a dataset file for enrichment and identifies

the appropriate properties for each column, the file is transformed into a SQL table with a new

schema, which is then inserted into the Factory Data Storage and registered as a new

distribution in the Factory Data Catalogue.

This new distribution includes the dataset ID from the Factory Data Storage and basic

metadata, along with the newly created table schema. This schema can be reused for

enriching additional raw dataset files, allowing for automated execution of the enrichment

process and reducing the need for manual mapping. This feature is especially beneficial for

data streams, as it enables users to perform enrichment automatically to all incoming data

streams if an initial version is manually mapped and the schema is stored in the Factory Data

Catalogue. Users can also convert a file into multiple tables with different schemas and query

the enriched datasets from the Factory Data Storage.

2.5.2 MAIN IMPROVEMENTS IN BETA VERSION

For the beta release version of this component, several changes and improvements have been

added both to the GUI and to the backend. This version is more user-friendly, scalable and

supports automatic execution of the data model mapping process. Additional features

available in the beta release version are:

UI Improvements

• The page for users to confirm or add a dataset header has been updated with a new

button for this process.

• Datasets are now displayed in a more compact view.

• Users can now assign a name to the distribution created in the Factory Data Catalogue

at the end of the process.

• The properties of the PISTIS Data Model in the drop-down menu now include an “i”

information button that links to the property’s URI, providing users with additional

information about the property, including its domain and range.

• A “Reset all” button has been added to reset all column name values, allowing users

to restart the mapping process if desired.

More informative error messages have been introduced to help users understand the

reasons for failures.

Backend Improvements

• A new endpoint has been introduced to support the automatic execution of the

enrichment process, which takes a new raw dataset and a dataset ID from the Factory

Data Catalogue to retrieve the schema for enrichment.

• The schema stored in the Factory Data Catalogue will now include the URI and names

of all properties.

• Error handling has been improved for better reliability.

101093016 - PISTIS - HORIZON-CL4-2022-DATA-01-04

D2.3 - Data Management and Protection services - Beta version Page 44 of 144

2.5.3 COMPONENT BACKLOG
This section provides the full set of features that belong to the backlog of the component.

ID #

Use Case
Backlog
Priority

Acceptance
Criteria

Status WP1
User
Stories As a <Role> I want to <Action>,

so that
<Reason>

UC_01 Data provider
Fetch a file I
uploaded and apply
a transformation

A specific
transformation
can be
performed

Alpha
Has access to
the files

Done PISTIS.
OUS.0
1

UC_02 Data provider

Fetch the data
models stored in
PISTIS models
repository

Keep an
updated list of
data models to
show to the
user

Alpha
Has access to
the data
models

Done PISTIS.
OUS.0
6

UC_03 Data provider
Transform my
datasets to a data
model

The datasets
follow a
domain
specific
standard

Alpha
Has access to
the files

Done PISTIS.
OUS.0
6

UC_04 Data provider

Store the
transformed dataset
in the Factory Data
Storage

The
transformed
dataset is
available in the
PISTIS platform

Alpha

The format is
supported by
the Factory
Data Storage

Done PISTIS.
OUS.0
1

UC_05 Data provider

Automatically
perform enrichment
for a new dataset
using a schema
stored in the
Catalogue

Manual
mapping to a
data model
does not need
to be
performed

Beta
Schema is
stored in the
catalogue

Done PISTIS.
OUS.0
1

2.5.4 FUNCTIONAL REQUIREMENTS
This section provides the functional requirements of the component.

ID Description
Related

Use
Cases

Comments

FR_01 The Data Enrichment component can access a file that the user
has uploaded.

US_01

FR_02 The Data Enrichment component gives the user access to domain
specific data models to transform their dataset to.

US_02

FR_03 The Data Enrichment component allows the user to assign a data
model present in the PISTIS Data Models repository to a dataset.

US_03

FR_04 The Data Enrichment component allows the user to save the
transformed dataset into the Factory Data Storage.

US_04

2.5.5 NON-FUNCTIONAL REQUIREMENTS
The following table presents the non-functional requirements of the component (if any).

101093016 - PISTIS - HORIZON-CL4-2022-DATA-01-04

D2.3 - Data Management and Protection services - Beta version Page 45 of 144

Requirement
Sub-category

Id Description (Detailed description of the requirement)

Performance
efficiency

NFR1
The Data Enrichment component will allow the user to fetch files, assign
a data model and save the new dataset without causing any delays.

Compatibility NFR2
The Data Enrichment component can be integrated with the Factory Data
Storage, Factory Data Catalogue and PISTIS Data Models Repository.

Reliability NFR3
The Data Enrichment component will allow user the access to the latest
available data models in the PISTIS Data Models Repository.

Reliability NFR4
All endpoints of the Data Enrichment component are always functional
and proper error messages are provided when a request fails.

Security
NFR5 The Data Enrichment component will be secured with the Identity and

Authorization Manager and Access Policies Manager.

Portability
NFR6 The Data Enrichment component is containerized and can be deployed in

hardware that supports Docker.

2.5.6 COMPONENT ARCHITECTURE

This section describes the component architecture of the Data Enrichment service. The figure

below illustrates the various modules within this service and their interactions. The GUI guides

users through selecting a dataset and an appropriate data model. The backend is developed

in Python using Flask to provide API endpoints, while SQLite is utilized to cache the dataset as

the user makes their selection in the frontend. In PISTIS, this service operates through

integration with the PISTIS Models Repository, Factory Data Catalogue, and Factory Data

Storage. A Swagger UI is added to the backend to provide detailed API descriptions.

The GUI of this service is accessible through the distributions in the Factory Data

Catalogue. The backend service processes the necessary requests for the frontend to

display a dataset, conduct a live search of the data model properties, and save the

enriched dataset back to the Factory Data Storage before creating a distribution in the

Factory Data Catalogue.

Figure 20: Data Enrichment Internal Architecture

101093016 - PISTIS - HORIZON-CL4-2022-DATA-01-04

D2.3 - Data Management and Protection services - Beta version Page 46 of 144

2.5.7 TECHNOLOGY BACKGROUND
The backend of the data enrichment module consists of a Python Flask App, and an SQLite

database. The Flask App serves a RESTful API that communicates with the frontend of this

component.

The frontend of the data enrichment module is built in Vue.js 3.0., using Pinia as the state

management framework and bootstrap CSS library.

2.5.8 GRAPHICAL USER INTERFACE

The first page of the Data Enrichment interface prompts the user to confirm the table header

that will be enriched with properties from the PISTIS data model. After confirming the header,

the user proceeds to the next page, where they can select specific properties for each column.

If no table header is available, the user has the option to add a new one.

Figure 21: Display the dataset

101093016 - PISTIS - HORIZON-CL4-2022-DATA-01-04

D2.3 - Data Management and Protection services - Beta version Page 47 of 144

Figure 22: Select the properties of the data model

After confirming the table header, selecting a column reveals a dropdown menu listing all

properties from the PISTIS data model. Each property includes an information icon that links

to its corresponding ontology URL. This selection process can be repeated for every column.

If needed, the user can restart the process using the "Reset values" button. Once all selections

are made and a distribution name is provided, clicking the "Save and create distribution"

button stores the dataset in the Factory Data Storage and adds a new distribution entry

referencing it in the Factory Data Catalogue.

2.5.9 DEVELOPER DOCUMENTATION
Data Enrichment service is accessible from the distributions in the Factory Data Catalogue UI.

The developer documentation of this service is available at: https://docs.pistis-

market.eu/developers/factory-data-storage/intro.

2.5.10 SOURCE CODE
Data Enrichment service consists of a frontend module built in Vue.js and a backend module

built using Python Flask. The source code of these modules is accessible here:

1. Data Enrichment Frontend: https://github.com/PISTIS-Platform/data-enrichment-

frontend

2. Data Enrichment Backend: https://github.com/PISTIS-Platform/data-enrichment-

backend

https://docs.pistis-market.eu/developers/factory-data-storage/intro
https://docs.pistis-market.eu/developers/factory-data-storage/intro
https://github.com/PISTIS-Platform/data-enrichment-frontend
https://github.com/PISTIS-Platform/data-enrichment-frontend
https://github.com/PISTIS-Platform/data-enrichment-backend
https://github.com/PISTIS-Platform/data-enrichment-backend

101093016 - PISTIS - HORIZON-CL4-2022-DATA-01-04

D2.3 - Data Management and Protection services - Beta version Page 48 of 144

2.6 DATA QUALITY ASSESSMENT

2.6.1 COMPONENT DESCRIPTION
The Data & Metadata Quality Assessment component ensures the quality and consistency of

data and metadata within the PISTIS system.

It provides two main functionalities:

• Metadata Assessment: This module checks and validates metadata against the

predefined Metadata model and returns the validation result together with a score of

the result. It identifies missing metadata, validates data types and formats, and

ensures adherence to data standards.

• Data Assessment: This module checks and validates structured data against quality

rules extracted from distribution metadata and returns the validation results. It checks

for data consistency, adherence to data quality rules, and identifies potential errors or

anomalies. The validation process ensures that data is reliable, accurate, and usable

for downstream applications. For this purpose, it uses the great expectations python

library.

The Data & Metadata Quality Assessment component provides APIs for both metadata and

data validation, allowing integration with various data management and processing tools. It

also supports on-demand and scheduled validation runs, enabling proactive data quality

monitoring.

2.6.2 MAIN IMPROVEMENTS IN BETA VERSION

The main improvements to the DQA beta version include a restructure of the content data

quality assessment backend workflow. This was a result of internal discussions around

ensuring trust and transparency within the PISTIS platform. Specifically, whether data owners

should be allowed to freely define data quality rules on their owned datasets. It was agreed

that given the difference between data quality in a production pipeline and data quality in a

marketplace, it was necessary to run quality assessments automatically, without

customization by the data owner.

The main changes to the workflow revolve around, using the insight report generated by the

Insight Generator component as the backbone of the DQA, which can then be supplemented

by rules parsed from the feature to concept mapping defined during Data Enrichment.

Additionally, both the MQA and DQA now use the same RDF report storage and are visualized

in using the same UI.

2.6.3 COMPONENT BACKLOG
This section provides the full set of features that belong to the backlog of the component.

101093016 - PISTIS - HORIZON-CL4-2022-DATA-01-04

D2.3 - Data Management and Protection services - Beta version Page 49 of 144

ID #
Use Case

Backlog
Priority

Acceptance
Criteria

Status WP1
User
Stories As a <Role> I want to <Action>,

so that
<Reason>

UC_01
Data
Consumer

Check the Quality
of a particular Data

I can be sure
before buying
a data

Beta

Generate
QA report
as DQV for
data

Done PISTIS.
OUS.0
4

UC_02
Data
Consumer

Check the Quality
of a particular
Metadata with a
general schema

I can be sure
before buying
a data

Alpha

Generate
QA report
as DQV for
metadata

Done PISTIS.
OUS.0
4

UC_03 Data Provider

Automatically
check the quality
of the Data I
provide

I know the
quality of my
data and can
get the
expected
value

Beta

Generate
QA report
as DQV for
data

Done PISTIS.
OUS.0
4

UC_04
Data Provider

Automatically
check the quality
of the Metadata I
provide

I can be sure
Data
Consumers
can find my
data

Alpha

Generate
QA report
as DQV for
metadata

Done PISTIS.
OUS.0
4

UC_05 Data Provider
Represent the best
possible quality of
my data

I can achieve
a higher
valuation

Beta
Display QA
report for
data

Done PISTIS.
OUS.0
4

UC_06
Data
Consumer

Check the Quality
of a particular
Metadata with a
PISTIS metadata
schema

I can be sure
before buying
a data

Beta

Generate
QA report
as DQV for
metadata
using PISTIS
schema

Done PISTIS.
OUS.0
4

UC_07
Data
Consumer

Request the
assessment of user
defined quality
rules against a
particular
published dataset

I can be sure
the data
satisfies my
use case
requirements

Version
1.0

Generate
consumer
designed
quality
assessment
requests

Upco
ming

PISTIS.
OUS.0
4

2.6.4 FUNCTIONAL REQUIREMENTS
This section provides the functional requirements of the component.

ID Description
Related Use

Cases
Comments

FR_01 The DQA should provide the ability to automatically check
the Quality of the Metadata.

US_04, US_06

FR_02 The DQA should provide the ability to check the Quality of
the Data after the user defined the structure of it.

US_05, US_03

FR_03 The DQA should provide the ability to make the
assessment results available to interested users.

US_01, US_02

101093016 - PISTIS - HORIZON-CL4-2022-DATA-01-04

D2.3 - Data Management and Protection services - Beta version Page 50 of 144

2.6.5 NON-FUNCTIONAL REQUIREMENTS
The following table presents the non-functional requirements of the component (if any).

Requirement
Sub-category

Id Description (Detailed description of the requirement)

Functional
Suitability

NFR1
The DQA provides with a data model to collect all information for data
asset publication or exchange.

Performance
efficiency

NFR2
The DQA fetch all information from the factory components to run a
quality assessment.

Compatibility

NFR3
The DQA will easily integrate with all directly connected catalogues and
components.

Usability NFR4
The DQA should be automatically run when a dataset distribution has a
content update.

Reliability NFR5
All endpoints of the DQA are functioning and clear error messages are
provided when a request fails.

Security NFR6
The DQA can be created only as the result of a distribution content
update by a registered Data Provider.

Portability NFR7
The DQA is containerized and can be deployed in hardware that supports
Docker.

2.6.6 TECHNOLOGY BACKGROUND
• The metadata assessment functionalities will be based on Fraunhofer FOKUS’ piveau

metrics and uses the piveau pipe for job management. The triple store of the data

catalogue is used to store the result as linked data, a MongoDB is used for aggregating

and caching the result to display it.

• The data content assessment uses Great Expectations as a framework to define and

validate data expectations. It allows for the creation of data pipelines and automated

tests to ensure data quality and integrity.

2.6.7 GRAPHICAL USER INTERFACE

The UI for the quality assessment results can be divided into three parts:

1. The result for the dataset metadata
2. The result for the metadata of each of the datasets distributions metadata
3. The result for the data itself

So, the following screenshot shows the result of a result for a single dataset metadata. This
result data is being retrieved from the metrics aggregator component. In cases where a

101093016 - PISTIS - HORIZON-CL4-2022-DATA-01-04

D2.3 - Data Management and Protection services - Beta version Page 51 of 144

metrics is calculated over the distributions, a percentage of the number of valid distributions
is shown.

Figure 23: Overview of the assessment result for a dataset

101093016 - PISTIS - HORIZON-CL4-2022-DATA-01-04

D2.3 - Data Management and Protection services - Beta version Page 52 of 144

Then in the following figure the individual result for both of the datasets distributions is

displayed. Each distribution metadata is validated on its own.

Figure 24: The quality measurement results for a single distribution of this dataset

The following figure shows the visualization of a data quality assessment run on the content

of a CSV distribution. Each data quality rule is evaluated individually and then grouped by its

respective data quality dimension.

101093016 - PISTIS - HORIZON-CL4-2022-DATA-01-04

D2.3 - Data Management and Protection services - Beta version Page 53 of 144

Figure 25: Example content quality assessment results

2.6.8 COMPONENT ARCHITECTURE

2.6.8.1 Metadata Quality Assessment

Figure 26: Metadata Quality Assessment service internal architecture

The MQA consists of three main layers, the pipeline layer, the services layer and the UI layer.

101093016 - PISTIS - HORIZON-CL4-2022-DATA-01-04

D2.3 - Data Management and Protection services - Beta version Page 54 of 144

The pipeline layer is called during Data Check-In and consists of several microservices to assess

the metadata quality and calculate the score. This result will then be stored as linked data in

the data factories linked data storage.

The UI layer is integrated into the data catalogue, so that it is possible to see the quality of

each dataset in the catalogue. To show this data it will talk to the services layer, which will

provide a cached version of the result for a more performant access.

2.6.8.2 Data Quality assessment

Figure 27: Data Quality Assessment service internal architecture

The DQA service will have a similar structure to the MQA. It will also have a pipeline layer to

calculate the quality of the data after Data Check-In. This will utilize the open-source data

quality platform great expectations.

The result will also be integrated into the data catalogue for easier access.

2.6.9 DEVELOPER DOCUMENTATION
The Data Quality Assessment component documentation is available at the following URL:

https://docs.pistis-market.eu/developers/data-quality-assessment/data-quality-assessment

https://docs.pistis-market.eu/developers/data-quality-assessment/data-quality-assessment

101093016 - PISTIS - HORIZON-CL4-2022-DATA-01-04

D2.3 - Data Management and Protection services - Beta version Page 55 of 144

2.6.10 SOURCE CODE
The Data Quality Assessment component source code is available in the following repository:

https://github.com/PISTIS-Platform/data-quality-assessor.

The metadata quality assessment is based on an existing open source solution: piveau

Metrics5. Several services from this project are used, integrated and configured to fit the needs

for PISTIS. For the source code please refer to the upstream repositories as listed in the

corresponding repository https://github.com/PISTIS-Platform/metadata-quality-assessment.

The following services are used: the Metrics Annotator performs static analysis on the

metadata, the Metrics Validating SHACL service checks a given RDF for conformity against a

given SHACL schema, the Metrics Score calculates a numeric data quality rating depending on

the analysis performed by the SHACL Validator and annotator, the Metrics Cache stores the

quality measurements as documents in a MongoDB for fast retrieval and filtering and the

Exporter stores the quality measurements as RDF in a Triplestore.

2.7 DATA INSIGHTS GENERATOR

2.7.1 COMPONENT DESCRIPTION
The Data Insights generator is a component that provides information about the structure and

data types of a given dataset in order to ease the understanding of a dataset for the final user.

The component is expected to receive a given dataset and map it to a python pandas

DataFrame. From that input dataset, a report on the different fields of the dataset is expected

to be provided, including some information such as the data type of each field, number of

missing elements, different values in categorial values, some statistical analytics on numerical

data, etc.

2.7.2 MAIN IMPROVEMENTS IN BETA VERSION

For this beta version, the following improvements have been introduced in the Data Insights

Generator component:

• Lite report generation: A new option to generate lighter versions of the reports have

been introduced. In order to improve the response time of those components using

the Data Insights Generator component, a faster way to generate reports (leaving out

the processing that might require a higher time/computational cost, such as

correlations) has been deployed.

• CSV file separator identification has been improved.

5 https://doc.piveau.io/metrics/

https://github.com/PISTIS-Platform/data-quality-assessor
https://github.com/PISTIS-Platform/metadata-quality-assessment

101093016 - PISTIS - HORIZON-CL4-2022-DATA-01-04

D2.3 - Data Management and Protection services - Beta version Page 56 of 144

2.7.3 COMPONENT BACKLOG
This section provides the full set of features that belong to the backlog of the component.

ID #

Use Case
Backlog
Priority

Acceptance
Criteria

Status WP1
User
Stories As a <Role> I want to <Action>,

so that
<Reason>

UC_01 Data Provider
Get insight from my
dataset

Get an insight
information
from a dataset

Alpha

Insight data
generated
with the
initial set of
insights

Done PISTIS.
OUS.0
3

UC_02 Data Provider
Get an improved set
of insights from my
dataset

Get an
extended
insight
information
from a dataset

Beta

Insight report
generated
with an
extended set
of insights

Done PISTIS.
OUS.0
3

UC_03 Data Provider
Get the final set of
insights from my
dataset

Get the final
set of insights
from a dataset

v1.0

Insight report
generated
with the final
set of
insights

Upcom
ing

PISTIS.
OUS.0
3

2.7.4 FUNCTIONAL REQUIREMENTS
This section provides the functional requirements of the component.

ID Description
Related Use

Cases
Comments

FR_01 The component has to
extract/generate some information
describing the data (metadata) by
analysing the data.

UC_01, UC_02,
UC_03, UC_04

2.7.5 NON-FUNCTIONAL REQUIREMENTS
The following table presents the non-functional requirements of the component (if any).

Requirement
Sub-category

Id Description (Detailed description of the requirement)

Compatibility NFR1
The component has to be able to analyse data in CSV format (Pandas
DataFrame compliant).

Security NFR2 PISTIS ensures that only authorised user can get the insights. 

101093016 - PISTIS - HORIZON-CL4-2022-DATA-01-04

D2.3 - Data Management and Protection services - Beta version Page 57 of 144

2.7.6 COMPONENT ARCHITECTURE

Figure 28: Component’s Internal Architecture

The component consists of a tool that when getting an input dataset via API, returns a JSON

with some insights of that input dataset. This API module has been built using Flask, while the

logic behind the insight generation itself relies on the ydata profiling library.

2.7.7 TECHNOLOGY BACKGROUND
The insight generation component relies on python libraries for data validation (by means of

a widely used python library for data manipulation such as pandas) and for the insight

generation report creation.

2.7.8 GRAPHICAL USER INTERFACE

As we can see in the following screenshot, the current version of the Data Insights Generator

provides the mechanisms to choose the output format of the report (json or html) and the

type (full version, slower to generate or lite and faster version) of the report to generate.

101093016 - PISTIS - HORIZON-CL4-2022-DATA-01-04

D2.3 - Data Management and Protection services - Beta version Page 58 of 144

Figure 29: Data Insights Generator Component UI in beta version

2.7.9 DEVELOPER DOCUMENTATION

The Data Insights generator component documentation is available at the following URL:

https://docs.pistis-market.eu/developers/insights-generator/insights-generation

2.7.10 SOURCE CODE

The source code developed for the Insight Generator component is currently stored under an

internal repository in ATOS premises until the license to be applied to it is decided.

The component’s UI (frontend) is part of the platform-frontend repository and its code is

maintained in GitHub under the PISTIS project and can be accessed via the respective link:

https://github.com/PISTIS-Platform/platform-frontend

https://docs.pistis-market.eu/developers/insights-generator/insights-generation
https://github.com/PISTIS-Platform/platform-frontend

101093016 - PISTIS - HORIZON-CL4-2022-DATA-01-04

D2.3 - Data Management and Protection services - Beta version Page 59 of 144

3 DATA & METADATA STORAGE BUNDLE

The Data & Metadata Storage bundle is delivering a catalogue for the data that are made

available by each organisation in their own PISTIS Data Factory environment. Moreover, it also

concerns those made available as “published” datasets over the whole ecosystem, alongside

with the appropriate data storage facilities to hold the data.

This bundle consists of the following components:

• Data Catalogues

• Factory Data Storage

These are presented in the following sub-sections.

3.1 DATA CATALOGUES

3.1.1 COMPONENT DESCRIPTION
Under “data catalogues” we refer to the components that offer catalogue features for the

data in PISTIS. They constitute the essential components to manage the offerings of data

assets and are the following:

• Factory Data Catalogue

• PISTIS Data Catalogue

The Factory Data Catalogue operates at the data provider’s site, serving as the gateway to an

organisation's data assets. It facilitates the management and availability of both metadata and

data, with each organisation responsible for maintaining its own catalogue and incorporating

their own (meta)data. In contrast, the PISTIS Data Catalogue is a centralized marketplace

service within the PISTIS Cloud Platform and aggregates the metadata from every Factory Data

Catalogue. As a marketplace, it enables users to explore diverse data assets shared by trusted

data providers.

The Factory Data Catalogues and the PISTIS Data Catalogue are interconnected through the

Asset Description Bundler, which publishes only the relevant metadata needed for acquisition

on the PISTIS Cloud Platform. This mechanism ensures that while the metadata is accessible,

the actual data remains with the data providers until a transaction is executed.

3.1.2 MAIN IMPROVEMENTS IN BETA VERSION

The latest improvements in this beta release are:

The unified GUI header has been implemented, which enhances user experience by

providing seamless navigation across PISTIS components. This improvement reduces

visual disruptions and gives a more cohesive feel throughout the platform.

The look and feel have been improved for better navigation and usability, and

distributions now can be downloaded.

101093016 - PISTIS - HORIZON-CL4-2022-DATA-01-04

D2.3 - Data Management and Protection services - Beta version Page 60 of 144

Data providers can customize their data model according to their needs by using

Shapes Constraint Language (SHACL).

3.1.3 COMPONENT BACKLOG
This section provides the full set of features that belong to the backlog of the component.

ID #
Use Case

Backlog
Priority

Acceptance
Criteria

Status WP1
User
Stories As a <Role> I want to <Action>, so that <Reason>

UC_01
Data
Provider

Provide metadata
for my data

I can increase my
data quality

Alpha

CRUD
operations
can be done
to the
selected
metadata

Done
(delivered in
alpha)

PISTIS.O
US.01

UC_02
Data
Consumer

Find the data I need
by searching in the
metadata using
keywords and filters

I can reach my
goal

Alpha

Search
function
returns the
most
relevant
datasets

Done
(delivered in
alpha)

PISTIS.O
US.09

UC_03
Data
Consumer

See what is
available

I can brainstorm
new ideas or
make a reliable
prototype

Alpha
All datasets
are listed

Done
(delivered in
alpha)

PISTIS.O
US.09

UC_04
Data
Provider

Configure custom
data schema for my
data

I can customise
my data schema
according to my
requirement

Beta

If needed,
having a
customised
data
schema is
possible

Done PISTIS.O
US.01

UC_05
Data
Provider

See what other
Data Providers offer

I know the
competition/
market, if I want
to make money
by selling data

v1.00

Data from
all providers
are listed in
the PISTIS
Data
Catalogue

Upcoming PISTIS.O
US.09

UC_06
Data
Consumer

Get/buy the data I
need

I can start
working on my
goal

v1.00

The
required
information
to get/buy a
data is
presented

Upcoming PISTIS.O
US.10

3.1.4 FUNCTIONAL REQUIREMENTS
This section provides the functional requirements of the component.

ID Description
Related Use

Cases
Comments

FR_01 Create, read, update, delete
(meta)data.

US_01, US_04,
US_06

FR_02 Search metadata and filter the result. US_02, US_03,
US_05

101093016 - PISTIS - HORIZON-CL4-2022-DATA-01-04

D2.3 - Data Management and Protection services - Beta version Page 61 of 144

3.1.5 NON-FUNCTIONAL REQUIREMENTS
The following table presents the non-functional requirements of the component (if any).

Requirement
Sub-category

Id Description (Detailed description of the requirement)

Functional
Suitability

NFR1
The Data Catalogue complies with all specified functional requirements.

Performance
efficiency

NFR2
The Data Catalogue is capable in handling a high volume of metadata
CRUD operations while maintaining its stability and performance.

Compatibility NFR3

The Data Catalogue features a REST API service, which has become the
standard for software services integration. This means it is compatible
with all other components capable of sending REST API requests and
processing the received responses.

Usability NFR4
Accompanied by detailed API documentation, it allows users to quickly
understand all available endpoints. When a request fails, an error
message is automatically generated to help the users to solve the issues.

Reliability NFR5
The Data Catalogue consistently gives responses that accurately
correspond to the given requests.

Security
NFR6 An authentication procedure can be configured in the Data Catalogue to

enable the catalogue owner to grant access only to authorized users.

Portability
NFR7 The Data Catalogue supports containerisation. When needed, it can be

deployed using container technologies like Docker and orchestrated with
systems like Kubernetes.

3.1.6 COMPONENT ARCHITECTURE
Both the Factory and PISTIS Data Catalogues are based on Piveau, an open-source, Java-based

data management solution. The data management solution is represented by piveau-hub in

Figure 30.

The Data Catalogue (piveau-hub) primarily consist of two main services: the repository service,

which manages RDF metadata in accordance with the DCAT-AP standards, and the search

service, which allows users to efficiently find the metadata they need. When a metadata is

added, it is initially processed by the repository service and stored in a Triplestore database,

Virtuoso. After that, the repository service converts the metadata into JSON format and

transfers it to the search service, enabling it to be indexed, stored, and managed within

Elasticsearch.

The repository and search services each have a dedicated API that can be utilized by any PISTIS

component capable of sending REST API requests and processing the responses.

Consequently, these APIs are essential for facilitating integration with other PISTIS

components. Additionally, a frontend is provided to facilitate user interaction with the Data

Catalogues.

The Factory and PISTIS Data Catalogue are kept in sync through the Asset Description Bundler

component, which operates independently from the core Data Catalogue component and is

not part of the Data Catalogue. Another component that interacts with the Factory Data

Catalogue is the Organisational Metadata and Data Provider and Consumer component.

Meanwhile, the PISTIS Data Catalogue interacts with PISTIS IAM, Data Model Repository, and

101093016 - PISTIS - HORIZON-CL4-2022-DATA-01-04

D2.3 - Data Management and Protection services - Beta version Page 62 of 144

PISTIS Cloud Platform Metadata Consumer components (for example, Smart Contract

Execution Engine).

Figure 30: Data Catalogue’s Internal Architecture

3.1.7 TECHNOLOGY BACKGROUND
The Data Catalogue will be based on the scalable, Open Source and Java-based metadata

management solution piveau6. Piveau is a catalogue solution, designed around Semantic Web

technologies and applies a Triplestore as its primary database to leverage the full potential of

Linked Data. That allows to store metadata, data and data models in native RDF (Resource

Description Format) without any restrictions. Especially, the integration of external existing

data via the principles of Linked Data is covered by the solution. It closes the gap between

formal Linked Data metadata specifications and their actual application in production. The

base data model is DCAT, but it can be extended to support any possible data model via

providing suitable Shapes Constraint Language (SHACL) files. Piveau is designed to harmonize

metadata from various sources into a single harmonized knowledge graph by applying a

common URI schema to all incoming data.

6 https://doc.piveau.io

https://doc.piveau.io/

101093016 - PISTIS - HORIZON-CL4-2022-DATA-01-04

D2.3 - Data Management and Protection services - Beta version Page 63 of 144

To help users quickly find the datasets they need, Piveau integrates a high-performance search

service based on Elasticsearch. Furthermore, Piveau comes with a user-friendly interface,

developed with JavaScript and Vue.js, that simplifies metadata browsing and discovery.

Piveau is already prepared to be integrated with Keycloak for access control and can be

deployed out-of-the-box on cloud infrastructures, like Kubernetes.

3.1.8 GRAPHICAL USER INTERFACE
Figure 31 displays a Data Catalogue listing all datasets, with filtering options on the left-hand

side to help users in narrowing the list. Users can filter the dataset list or search result, if

needed, based on specific criteria or metrics such as data publisher, data format, relevant

keywords or metadata quality.

Figure 31: A list of datasets with filters on the left-side

101093016 - PISTIS - HORIZON-CL4-2022-DATA-01-04

D2.3 - Data Management and Protection services - Beta version Page 64 of 144

Figure 32 shows the dataset detail page in a Factory Catalogue, where data asset owners can

track dataset lineage and assess its quality. This page is also the entry point to publish a data

asset to the PISTIS Data Catalogue. For each distribution, data asset owners can enrich and

anonymize the data as needed.

Figure 32: Presentation of a dataset and its associated metadata

Figure 33 displays the dataset detail page in the PISTIS Dataset Catalogue, serving as the entry

point for data consumers to purchase a data asset or provide feedback.

101093016 - PISTIS - HORIZON-CL4-2022-DATA-01-04

D2.3 - Data Management and Protection services - Beta version Page 65 of 144

Figure 33: Dataset detail page in the PISTIS Dataset Catalogue

3.1.9 DEVELOPER DOCUMENTATION
Documentation and guides are available at https://docs.pistis-market.eu/developers/factory-

catalogue/introduction. They provide support for implementation and integration with other

components. Key topics covered include entity creation and distribution management.

3.1.10 SOURCE CODE
The data catalogues (Factory and Cloud) are built using the open source solution piveau-hub7.

A list of used services can be found in the corresponding GitHub repository8. Hub-repo acts

as a middleware and abstraction layer to interact with the Triplestore. It offers a RESTful

interface, supporting the major RDF serializations (Turtle, JSON-LD, N-Triples, RDF/XML,

7 https://gitlab.com/piveau/hub

8 https://github.com/PISTIS-Platform/pistis-catalog-backend

https://docs.pistis-market.eu/developers/factory-catalogue/introduction
https://docs.pistis-market.eu/developers/factory-catalogue/introduction
https://gitlab.com/piveau/hub
https://github.com/PISTIS-Platform/pistis-catalog-backend

101093016 - PISTIS - HORIZON-CL4-2022-DATA-01-04

D2.3 - Data Management and Protection services - Beta version Page 66 of 144

Notation3). Hub-search is responsible for encapsulating the communication between hub-

repo and search engine (Elasticsearch) for enabling full-text search. The frontend is developed

with Vue.js and the codes can also be found on PISTIS GitHub repository9.

3.2 FACTORY DATA STORAGE

3.2.1 COMPONENT DESCRIPTION

The Factory Data Storage is the core storage component for PISTIS factories, responsible for

storing both raw and processed datasets. It operates locally within the Data Factory

environment, which resides on-premises at organizations participating in the PISTIS

ecosystem. Data from each organization is ingested into this storage system via the Data

Check-In module. The storage system includes two main databases:

• A primary database for relational datasets stored as SQL tables.

• A secondary database for storing datasets as files.

Access to both databases is provided through a RESTful API. In the alpha release, PostgreSQL

was used to store both SQL tables and files. However, in the beta version, MongoDB replaces

PostgreSQL for file storage due to its superior performance with large files. The choice of

database depends on the dataset format. Relational datasets with a defined schema are

stored as SQL tables in the primary database. Each table is assigned a unique UUID, which can

be used to query its rows and columns. File-based datasets (e.g., .csv, .txt, .xml) are stored in

the MongoDB database, also identified by a UUID. These files can later be transformed into

SQL tables and migrated to the primary database.

The main functionalities of the Factory Data Storage are:

• Storage for tables in a relational database and files in MongoDB

• Access to the database using a REST API

• CRUD operations on tables

• CRUD operations on files

3.2.2 MAIN IMPROVEMENTS IN BETA VERSION

In the beta release of this component, the primary focus was on enhancing performance and

extending support for a broader range of file formats, making the service more scalable and

performant. Significant improvements were made to ensure the system can efficiently handle

larger datasets and support seamless integration with other components of the PISTIS

9 https://github.com/PISTIS-Platform/pistis-catalog-ui

https://github.com/PISTIS-Platform/pistis-catalog-ui

101093016 - PISTIS - HORIZON-CL4-2022-DATA-01-04

D2.3 - Data Management and Protection services - Beta version Page 67 of 144

ecosystem. One of the key changes was the transition from PostgreSQL to MongoDB for file

storage. MongoDB was selected for its superior performance in handling large, unstructured

files and its native support for flexible data formats, which aligns well with PISTIS’s evolving

data ingestion needs. In addition, robust error handling mechanisms were introduced. These

enhancements improve system stability, offer clearer feedback in case of failures, and

facilitate smoother interoperability with other PISTIS modules. This not only helps developers

diagnose issues more effectively but also enhances the overall user experience by reducing

unexpected disruptions.

Key improvements in the beta release are:

• Migration to MongoDB for storing files, replacing PostgreSQL

• Implementation of comprehensive error handling to support better integration and

user interaction.

3.2.3 COMPONENT BACKLOG
This section provides the full set of features that belong to the backlog of the component.

ID #
Use Case

Backlog
Priority

Acceptance
Criteria

Status WP1 User
Stories

As a <Role>
I want to
<Action>,

so that
<Reason>

UC_01 Data provider
Store a dataset in
the form of a file

It is made
available in
the PISTIS
platform

Alpha

The format
and size of
the file is
supported by
the data
storage

Done PISTIS.OUS.
01,
PISTIS.OUS.
06

UC_02

Data provider

Store a dataset in
the form of a file
or a table

It is made
available in
the PISTIS
platform

Alpha

The data
schema is
correctly
defined

Done PISTIS.OUS.
01

UC_03

Data provider

Fetch a dataset in
the form of a file

It can be
transformed
into a tabular
dataset with a
domain
specific data
model

Alpha
Has access
rights to the
file

Done PISTIS.OUS.
03

UC_04
Data provider

Fetch a dataset in
the form of a
table

It can be used
for any of the
other factory
components
for quality
check or data
transformatio
n

Alpha
Has access
rights to the
table

Done PISTIS.OUS.
04

UC_05
Data provider

Update a dataset
in the form of a
table or a file

It can be
made
available for
further
processing

Alpha

Has access
rights to the
table

Done PISTIS.OUS.
04

101093016 - PISTIS - HORIZON-CL4-2022-DATA-01-04

D2.3 - Data Management and Protection services - Beta version Page 68 of 144

and quality
analysis

3.2.4 FUNCTIONAL REQUIREMENTS
This section provides the functional requirements of the component.

ID Description
Related Use

Cases
Comments

FR_01 The Factory Data Storage stores datasets in the form of SQL
tables and files.

US_01, US_02

FR_02 Datasets in the form of files and tables can be read from the
Factory Data Storage.

US_03, US_04

FR_03 Datasets in the form of files and tables can be updated in
the Factory Data Storage.

US_05

3.2.5 NON-FUNCTIONAL REQUIREMENTS
The following table presents the non-functional requirements of the component (if any).

Requirement
Sub-category

Id Description (Detailed description of the requirement)

Functional
Suitability

NFR1
The Factory Data Storage is built respecting all functional requirements.

Performance
efficiency

NFR2
The Factory Data Storage API stores files and tables without causing
delay.

Compatibility NFR3
The Factory Data Storage API can be integrated with other components
of the PISTIS Factory Architecture.

Usability NFR4
All endpoints of the Factory Data Storage adhere to the standards of
OpenAPI and are functional with proper configuration.

Reliability NFR5
All endpoints of the Factory Data Storage are always functional and
proper error messages are provided when a request fails.

Security
NFR6 The Factory Data Storage will be protected with the Identity and

Authorization Manager and access policies.

Portability
NFR7 The Factory Data Storage is containerized and can run on any hardware

that supports docker.

3.2.6 COMPONENT ARCHITECTURE
The Factory Data Storage is built using a Python Flask app and two databases, PostgreSQL and

MongoDB to meet PISTIS’s factory storage requirements. The Flask framework provides the

infrastructure for handling HTTP requests and defining endpoints, facilitating communication

between the clients, backend and the database. It builds endpoints to create, read, update,

and delete data with ease. In PISTIS, two types of data are being handled using the storage,

data in the form of structured tables with a specific data schema and data in the form of files.

The API of the Factory Data Storage provides separate POST endpoints to upload files and to

create tables. Along with these POST endpoints, GET, PUT and DELETE endpoints are also built

to retrieve, update and delete data in the database. For data stored as tables, the update

operation will add rows to a table and for data stored as files, the update operation can update

101093016 - PISTIS - HORIZON-CL4-2022-DATA-01-04

D2.3 - Data Management and Protection services - Beta version Page 69 of 144

the file or rename a file. The input to these endpoints will vary depending on the type of the

request and the type of the data being handled by the request. For example, files are uploaded

using a formdata parameter “File” and tables are created using a JSON body with the data

model, data and any metadata such as the name of the table.

Inputs provided to every tables endpoint is transferred into an SQL query or a python object

and is used to interact with the PostgreSQL database using SQLAlchemy. SQLAlchemy's Object-

Relational Mapping (ORM) capabilities allow interaction with the Postgres relational database

using Python objects along with raw SQL queries. Relational tables with fixed data schema can

be created by defining them as a Python object, and if the schema is not known, then native

SQL queries are created and ran on the database using the SQLALchemy engine.

PostgreSQL is the chosen relational database to handle SQL tables, which is a reliable and

scalable database management system that stores and manages data with high efficiency.

Data inserted into the PISTIS factory through the Data Check-in process are separated based

on their format and is stored in either of the two databases (Postgres or Mongo) for tables or

files. Every dataset stored in the database has a UUID assigned to it, this UUID is the unique

identifier of a dataset and is used to perform GET, UPDATE and DELETE operations on this

dataset. In MongoDB, files up to 16MB can be stored as documents and anything larger is

stored using GridFS. GridFS splits a file into smaller chunks and stores them as a metadata

collection and binary data collection. The gridfs module in PyMongo is used for interaction of

the Factory Data Storage backend with MongoDB.

Figure 34: Factory Data Storage Internal Architecture

101093016 - PISTIS - HORIZON-CL4-2022-DATA-01-04

D2.3 - Data Management and Protection services - Beta version Page 70 of 144

3.2.7 TECHNOLOGY BACKGROUND
Factory Data Storage consists of two core modules: the databases for storing files and the

RESTful API for accessing them. It uses two types of databases—PostgreSQL, an open-source

object-relational database management system, and MongoDB, a scalable, document-

oriented NoSQL database suited for handling both structured and unstructured data. The REST

API is built using Python Flask, and extended with:

• SQLAlchemy, a powerful Python SQL toolkit and Object Relational Mapper (ORM) for

interacting with PostgreSQL.

• PyMongo, the official MongoDB driver for Python, which facilitates communication

with the MongoDB instance.

The PostgreSQL and MongoDB databases run as separate instances, but are seamlessly

integrated and accessed through the unified RESTful API.

3.2.8 GRAPHICAL USER INTERFACE
This is a backend service, and has no UI.

3.2.9 DEVELOPER DOCUMENTATION
The Factory Data Storage component of the PISTIS platform manages and provides access to

both structured and unstructured datasets via a RESTful API connected to two databases. The

developer documentation of this service is available at: https://docs.pistis-

market.eu/developers/factory-data-storage/intro.

3.2.10 SOURCE CODE
The source code of Factory Data Storage is available at https://github.com/PISTIS-

Platform/factory-data-storage and the Swagger UI is accessible through this URL:

https://develop.pistis-market.eu/srv/factory-data-storage/.

https://docs.pistis-market.eu/developers/factory-data-storage/intro
https://docs.pistis-market.eu/developers/factory-data-storage/intro
https://github.com/PISTIS-Platform/factory-data-storage
https://github.com/PISTIS-Platform/factory-data-storage
https://develop.pistis-market.eu/srv/factory-data-storage/

101093016 - PISTIS - HORIZON-CL4-2022-DATA-01-04

D2.3 - Data Management and Protection services - Beta version Page 71 of 144

4 DATA DISCOVERY BUNDLE

The Data Discovery bundle provides services for searching and discovering the available data

assets that might be of interest for a Data Consumer.

This bundle consists of the following components:

• Distributed Query Engine

• Matchmaking Services

Distributed Query Engine is presented in the following sub-sections. Matchmaking Services

are presented in D3.2.

4.1 DISTRIBUTED QUERY ENGINE

4.1.1 COMPONENT DESCRIPTION
The main purpose of this component is to query directly the unstructured or semi-structured

data to discover datasets that cannot be retrieved by querying their metadata on the

Distributed Data Catalogue.

However, the volume of the data stored in the Data Factories does not allow extensive search

approaches to be used. Therefore, Locality Sensitive Hashing techniques are employed to

quickly obtain a list of matches. Subsequently, the lists of potential matches yielded by the

LSH modules that reside in every Data Factory are further evaluated and enriched with

metadata retrieved by the Distributed Data Catalogue.

Then, the merged list is cross-checked with Keycloak to decide if the users that performed the

search have access rights to the results. The matched datasets for which the access is

forbidden are filtered out. Finally, this list is fed to a collection of pretrained ML-models that

re-rank it based on the datasets’ metadata in order to give prominence to the most relevant

matches.

4.1.2 MAIN IMPROVEMENTS IN BETA VERSION

The beta release of the information retrieval system introduces two key architectural

upgrades over the alpha version. The core enhancement is the deployment of a new ML-based

re-ranker module, which processes the candidate document set from the initial first-pass

retrieval performed on the Data Factories. This component uses a fitted model to re-score the

merged list of results, significantly boosting top-k precision by better evaluating relevance

based on additional information fetched from the Distributed Data Catalogue. On the front

end, the Distributed Query endpoints have been fully integrated into PISTIS main GUI.

101093016 - PISTIS - HORIZON-CL4-2022-DATA-01-04

D2.3 - Data Management and Protection services - Beta version Page 72 of 144

4.1.3 COMPONENT BACKLOG
This section provides the full set of features that belong to the backlog of the component.

ID #

Use Case
Backlog
Priority

Acceptance
Criteria

Status WP1
User
Stories As a <Role> I want to <Action>,

so that
<Reason>

UC_01 User
To search for
dataset

I can discover
datasets based
on stored data

Alpha

The user can
perform
queries using
an API

Done PISTIS.
OUS.9

UC_02
Distributed
Query backend

Create forwarding
service

To forward the
metadata
queries to the
Data Catalogue

Alpha

Metadata
queries are
automatically
sent to the
Data
Catalogue

Done PISTIS.
OUS.9

UC_03 LSH
Create an LSH
service

Datasets are
indexed for
enabling quick
NN queries

Alpha

Datasets can
be indexed
and retrieved
by making
API calls

Done PISTIS.
OUS.9

UC_04 ReRanker
Create
Merger/ReRanker

The results
returned by
the Data
Catalogue and
the LSH service
are unified

Alpha

A unified list
of results
that match
both types of
searching is
returned

Done PISTIS.
OUS.9

UC_05 ReRanker
Create ReRanking
training service

To fit a model
that will help
predict a more
accurate
ranking of the
results

Beta

The list of
US_4 is
sorted based
on relevance

Done PISTIS.
OUS.9

UC_06 User
To search for
dataset using GUI

I can discover
datasets based
on stored data
in a user-
friendly
manner

Beta

The user can
perform
queries and
browse
results using
a GUI

Done PISTIS.
OUS.9

4.1.4 FUNCTIONAL REQUIREMENTS
This section provides the functional requirements of the component.

ID Description
Related

Use Cases
Comments

FR_01 The users of the PISTIS platform must be able to search for
datasets based on their contents.

US_01,
US_03,
US_06

FR_02 The component should support queries with text or binary data. US_03

FR_03 The component should support queries over streaming data. US_03

FR_04 The PISTIS platform will have a unified UI for searching datasets
based both on data and metadata (see PISTIS Data Catalogue).

US_01,
US_02,
US_03,
US_04,

101093016 - PISTIS - HORIZON-CL4-2022-DATA-01-04

D2.3 - Data Management and Protection services - Beta version Page 73 of 144

US_05,
US_06

FR_05 Filter out those results that the user does not have read access
for.

US_01

4.1.5 NON-FUNCTIONAL REQUIREMENTS
The following table presents the non-functional requirements of the component (if any).

Requirement
Sub-category

Id Description (Detailed description of the requirement)

Performance
efficiency

NFR1
The overall process shall be performed without delays and should not
consume unnecessary system resources.

Reliability NFR2
The Distributed Query Engine shall operate in a reliable manner, checking
efficiently the connection status of the PISTIS Data Factories in the
network.

Security
NFR3 The overall process shall be made through secure communication

channels.

Usability NFR4 The GUI for searching datasets shall be intuitive and user-friendly.

4.1.6 COMPONENT ARCHITECTURE
The Distributed Query Engine is divided into three major subcomponents: the Distributed

Query Service, the Locality Sensitive Hashing component and the ReRanker. At its heart lies

the Distributed Query Service which orchestrates the various tasks that need to be executed.

First, it receives the search requests performed by the end users and forwards them to the

LSH components that run on every Data Factory. When the subsequent searches are finished,

it gathers all the results in the form of lists of datasets’ UUIDs and communicates with the IAM

component to check whether the users have the appropriate access rights over them. Then it

retrieves the datasets’ details and metadata from the Data Catalogue. Finally, before these

results are returned to the end users, they are sorted by the ReRanker component. As it has

already been mentioned, the LSH component is present on every Data Factory and is charged

with indexing the datasets that are stored in the Factory’s Data Storage. It comprises of four

modules: the Index Creator that generates the hashes that describe a dataset and is triggered

whenever a dataset is inserted/updated, the Hashes Storage where the aforementioned

hashes are persisted, the Query Executor that is charged with retrieving the most relevant

datasets given some query data and a Controller that manages all the above and exposes an

API to the rest of the PISTIS components. The last subcomponent of the Distributed Query

Engine is the ReRanker which performs the task of merging and re-arranging the various lists

of results. To achieve this, it has two modules that employ ML techniques: the first one is for

training a model that will perform the sorting and the second one uses the fitted model to

predict a more accurate ranking of the unified list of results.

101093016 - PISTIS - HORIZON-CL4-2022-DATA-01-04

D2.3 - Data Management and Protection services - Beta version Page 74 of 144

Figure 35: Distributed Query Engine Internal Architecture

4.1.7 TECHNOLOGY BACKGROUND
The following main technologies are employed for developing the Distributed Query Engine:

• The Redis NoSQL database is used for storing and retrieving the hashed generated by

the LSH component of the Distributed Query Engine.

• Python’s Flask microframework has been employed for creating all the web APIs

exposed by Distributed Query Engine’s services to the rest of the PISTIS components.

• For developing the ML part of the ReRanker various Python libraries have been used.

Some of the most notable among them are: numpy for handling numerical data, scikit-

learn for data preprocessing and classification using classic algorithms and pytorch for

building and training Neural Networks etc.

4.1.8 GRAPHICAL USER INTERFACE

101093016 - PISTIS - HORIZON-CL4-2022-DATA-01-04

D2.3 - Data Management and Protection services - Beta version Page 75 of 144

Figure 36: Searching for datasets using the GUI

The “Data Search” tab is used to perform queries directly against the data content, rather than

its metadata. Users may enter their queries into the search bar at the top of the page.

4.1.9 DEVELOPER DOCUMENTATION
The developer documentation of this service is available at:

https://docs.pistis-market.eu/developers/distributed-query/distributed-query

4.1.10 SOURCE CODE
The source code of the component is maintained in GitHub as a git repository under the PISTIS

project and can be accessed via the respective link: https://github.com/PISTIS-

Platform/distributed-query.

https://docs.pistis-market.eu/developers/distributed-query/distributed-query
https://github.com/PISTIS-Platform/distributed-query
https://github.com/PISTIS-Platform/distributed-query

101093016 - PISTIS - HORIZON-CL4-2022-DATA-01-04

D2.3 - Data Management and Protection services - Beta version Page 76 of 144

5 DATA EXCHANGE BUNDLE

The Data Exchange bundle facilitates the peer-to-peer exchange of the data assets between a

Data Provider and a Data Consumer, adhering to the terms of the contract that has been

signed to govern the overall transaction.

This bundle consists of the following components:

• PISTIS Data Factory Connector

• Smart Contract Checker

These are presented in the following sub-sections.

5.1 PISTIS DATA FACTORY CONNECTOR

5.1.1 COMPONENT DESCRIPTION
The transfer of data between different PISTIS actors that belong to different organisations

(e.g. Data Providers and Data Consumers) is the logical termination point of a monetary or

otherwise exchange agreement flow, where following the establishment of an electronic

contract, the dataset that is part of the agreement must reach the Data Consumer.

The overall transfer in PISTIS is facilitated by the PISTIS Data Factory Connector (or else, the

PISTIS Connector), which is an infrastructure that is tasked, once a data transfer contract

needs to be executed, to fetch the data stored in the PISTIS Data Factory of the Data Provider

and pass it to the PISTIS Data Factory of the Data Consumer.

This transfer is to be performed following the appropriate checks at smart contract level that

will govern such exchanges (based on licence, usage and permission attributes stored in the

ledger), and the result will be the deposition of the data asset purchased by the Data

Consumer in his own, local data storage.

5.1.2 MAIN IMPROVEMENTS IN BETA VERSION

In this version, the Data Factory Connector, apart from the one-off sale of a dataset (alpha

version), supports also:

- the transfer of a dataset from the Data Factory of the Provider to the Data Factory of

the Consumer that has been acquired with a paid subscription (static dataset or a

dataset updated based on a schedule, and

- the subscription of the data owner to a Kafka stream that is sold by a data owner.

101093016 - PISTIS - HORIZON-CL4-2022-DATA-01-04

D2.3 - Data Management and Protection services - Beta version Page 77 of 144

5.1.3 COMPONENT BACKLOG
This section provides the full set of features that belong to the backlog of the component.

UC_09 has been added to that list, as a new feature.

ID #

Use Case
Backlog
Priority

Acceptance
Criteria

Status WP1
User

Stories As a <Role> I want to <Action>,
so that
<Reason>

UC_01 Data Consumer

Have a data asset
I’ve already bought,
automatically
transferred to my
Data Factory

I can use the
dataset on my
side

Alpha

The data
asset bought
is in the Data
Consumer
Storage

Done

PISTIS.
OUS.1

2

UC_02 Data Consumer

Have a dataset to
which I paid a
subscription to
automatically be
updated in my Data
Factory

I can use the
dataset on my
side

Beta

The data
asset bought
is in the Data
Consumer
Storage

Done

PISTIS.
OUS.1

2

UC_03 Data Consumer

Have a slice of the
dataset I bought
automatically
transferred to my
Data Factory

I can use the
dataset on my
side

V1.00

The data
asset bought
is in the Data
Consumer
Storage

Upcom
ing

PISTIS.
OUS.1

2

UC_04 Data Provider
Log all data transfers
I made to Buyers in
the blockchain

There is
evidence and
information
about those

Alpha
The Ledger
contains data
transfer logs

Done

PISTIS.
OUS.1

2

UC_05 Data Consumer
Get notified once a
transfer has finished

I can use the
dataset on my
side

V1.00

Notifications
of executed
transfers are
shown to
Data
Consumer

Upcom
ing

PISTIS.
OUS.1

2

UC_06 Data Consumer

Get notified once a
transfer has failed
and be provided
with an error code

I can contact
PISTIS to get
support

V1.00

Notifications
of failures
are shown to
Data
Consumer

Upcom
ing

PISTIS.
OUS.1

2

UC_07 Data Provider
Get notified once a
transfer has finished

I know the
Data Consumer
got his
purchase

V1.00

Notifications
of executed
transfers are
shown to
Data
Provider

Upcom
ing

PISTIS.
OUS.1

2

UC_08 Data Provider

Get notified once a
transfer has failed
and be provided
with an error code

I can contact
PISTIS to get
support

V1.00

Notifications
of failures
are shown to
Data
Provider

Upcom
ing

PISTIS.
OUS.1

2

UC_09 Data Consumer

Be able to connect
and ingest data from
a stream to which I
bought access

These data can
become
instantly
available at my
side

Beta

Streaming
data
available in
the Data
Factory of
the
Consumer

Done

PISTIS.
OUS.1

2

101093016 - PISTIS - HORIZON-CL4-2022-DATA-01-04

D2.3 - Data Management and Protection services - Beta version Page 78 of 144

5.1.4 FUNCTIONAL REQUIREMENTS
This section provides the functional requirements of the component.

ID Description
Related Use

Cases
Comments

FR_01

The PISTIS Data Factory Connector shall

transfer the acquired data asset (either

static or streaming data) from the PISTIS

Data Factory of the Data Provider to that of

the Data Consumer.

UC_01, UC_02,

UC_03, UC_04
N/A

FR_02

The PISTIS Data Factory Connector shall

execute data transfers automatically based

on the terms of the smart contract.

UC_01, UC_02,

UC_03, UC_04
N/A

FR_03

The PISTIS Data Factory Connector shall

provide notifications relevant to the

outcome of data transfers.

UC_05, UC_06,

UC_07, UC_08
N/A

5.1.5 NON-FUNCTIONAL REQUIREMENTS
The following table presents the non-functional requirements of the component (if any).

Requirement
Sub-category

Id Description (Detailed description of the requirement)

Performance
efficiency

NFR1
The overall transaction shall be performed without delays and should not
consume unnecessary system resources.

Reliability NFR2
The PISTIS Data Factory Connector shall operate in a reliable manner,
transferring the whole of the data asset that is described in the smart
contract and being capable of high resilience.

Reliability NFR3 The PISTIS Data Factory Connector shall provide notifications to the users.

Security
NFR4 The overall data transfer shall be made through secure communication

channels.

5.1.6 COMPONENT ARCHITECTURE
The main elements comprising the PISTIS Data Factory Connector, which handles datasets as

files, are:

- The Smart Contract checker which is used to retrieve and analyse the details present

in the smart contract to resolve how the system shall proceed with the transfer.

- The Transfer Gateway Registry that is used to store transaction related data locally in

order to support certain operations (such as transferring data in batches, etc).

- The Data Factory Storage I/O Service that is retrieving the data stored in the local

storage of a PISTIS Data Factory to transfer it. The same component also writes back

to the PISTIS Data Factory of the Data Consumer, once he has acquired the data asset.

- The Metadata Repository I/O Service that is retrieving the asset’s metadata stored in

the PISTIS Data Factory Storage to transfer it. The same component also writes back

101093016 - PISTIS - HORIZON-CL4-2022-DATA-01-04

D2.3 - Data Management and Protection services - Beta version Page 79 of 144

the asset’s metadata to the Metadata Repository of the Data Consumer, once he has

acquired the data asset.

- The Request / Data Reception Service that is used to request a specific dataset (based

on an active smart contract) and is also receiving the relevant information (and data

asset).

- The Data Publishing Service that is used to bundle the data and the metadata of an

asset and send it to the Request / Data Reception Service of the PISTIS Data Factory

Connector component that resides at the side of the Data Consumer.

Figure 37: PISTIS Factory Connector’s Internal Architecture – Files Transfer

Furthermore, as streaming data is now available to be traded over PISTIS, a new part of the

Connector has been developed. Its architecture is shown below.

Once the messages are transferred to the factory Kafka topic, the user who now owns the

streaming data, should be able to consume the messages from that topic. To enable this, the

Factory UI component requests the Kafka connection details and user credentials from the

internal Data Connector module, the Data Consumer Service.

The Kafka service then interacts with the Data Factory Storage component to retrieve the

factory details such as the factory name, and with the Kafka broker to obtain the necessary

connection information and user credentials.

With the provided connection details and credentials the consumer user can authenticate

with Kafka and start consuming messages from the topic. For example, an external application

can use this information to connect to the Kafka broker and consume messages, as depicted

in the diagram below.

101093016 - PISTIS - HORIZON-CL4-2022-DATA-01-04

D2.3 - Data Management and Protection services - Beta version Page 80 of 144

Figure 38: PISTIS Factory Connector’s Internal Architecture – Files Transfer

5.1.7 TECHNOLOGY BACKGROUND
The main technology used for the Component is Node.JS (based on the Nest Framework) as

the whole component is a backend service that is deployed at the side of each PISTIS Data

Factory and can ingest and provide data to other deployments as instructed by the smart

contracts.

5.1.8 GRAPHICAL USER INTERFACE
N/A - This is a backend service and GUI is not available.

5.1.9 DEVELOPER DOCUMENTATION
The developer guide for this component is available here:

https://docs.pistis-market.eu/developers/connector/connector

5.1.10 SOURCE CODE
The source code of this component is available to consortium and reviewers here:

• Backend: https://github.com/PISTIS-Platform/components-monorepo

• Frontend: https://github.com/PISTIS-Platform/cloud-ui and

https://github.com/PISTIS-Platform/platform-frontend

https://docs.pistis-market.eu/developers/connector/connector
https://github.com/PISTIS-Platform/components-monorepo
https://github.com/PISTIS-Platform/cloud-ui
https://github.com/PISTIS-Platform/platform-frontend

101093016 - PISTIS - HORIZON-CL4-2022-DATA-01-04

D2.3 - Data Management and Protection services - Beta version Page 81 of 144

5.2 SMART CONTRACT CHECKER

5.2.1 COMPONENT DESCRIPTION

The Smart Contract Checker (SCC) in the PISTIS platform is responsible for making sure every

transaction on the network follows the platform’s rules. Smart Contract Checker’s checking

policy is based on two pillars that collectively uphold the security, authenticity, and

compliance of operations on the platform:

• First, that every transaction comes from a real, authorized user who has the right

credentials and is registered on the platform. This means the SCC verifies all signatures

and confirms the user’s identity and permission to perform the action.

• Second, it ensures that the transaction itself does not break any rules or restrictions,

such as privacy policies, data usage limits, or account balances before the data or asset

changes hands.

The SCC acts as a rule-based engine. In the Alpha version, it works with a fixed set of basic

rules. These rules are expected to be expanded and updated as the project goes on, allowing

the SCC to check new or more complex rules required by the platform operators.

5.2.2 MAIN IMPROVEMENTS IN BETA VERSION

In the Beta version, the Smart Contract Checker will improve how it applies the official rules

for checking transactions. The SCC will perform these checks more strictly and consistently,

especially in cases where the Alpha version may not have covered them fully. It will also

expand its checks to include both the buyer’s and the seller’s sides of a transaction. This means

that before a transaction happens, the SCC will verify permissions and prohibitions not only

for the party selling or sharing data but also for the party buying or receiving it. These

improvements will help make sure that all transactions comply with contract and license rules,

enhancing the security and trustworthiness of the platform.

5.2.3 COMPONENT BACKLOG
This section provides the full set of features that belong to the backlog of the component.

ID #

Use Case
Backlog
Priority

Acceptance
Criteria

Status WP1
User
Stories As a <Role> I want to <Action>,

so that
<Reason>

US_01
Data
Provider

check the data
before sharing
them (with
UBITECH’s rules)

I can be sure
everything is
in the
correct form

Alpha

smart
contract
check
functionali
ty

Done PISTIS
.OUS.
10,
PISTIS
.OUS.

101093016 - PISTIS - HORIZON-CL4-2022-DATA-01-04

D2.3 - Data Management and Protection services - Beta version Page 82 of 144

11

US_02
Data
Consumer

each data trade I
perform to be
checked (with
UBITECH’s rules)

I can be sure
of the data
validity and
correctness

Alpha

smart
contract
check
functionali
ty

Done PISTIS
.OUS.
10,
PISTIS
.OUS.
11

US_03

Data
Provider,
Data
Administrat
or

be sure that
before data
sharing the
necessary
amount of
money have
transferred
successfully

I can be sure
that the
Data
Consumer
and paid for
them

Alpha

smart
contract
check
functionali
ty

Done PISTIS
.OUS.
10,
PISTIS
.OUS.
11

US_04

Data
Provider,
Data
Consumer

be sure that
before data
sharing that data
are GDPR
compliant

I can be sure
that no legal
issues will
be arise

Alpha

smart
contract
check
functionali
ty

Done PISTIS
.OUS.
10,
PISTIS
.OUS.
11

US_05

Data
Provider,
Data
Consumer

be sure that
before data
sharing that do
not violate and
policy (with
UBITECH’s rules)

I can be sure
that no
issues will
be arise

Alpha

smart
contract
check
functionali
ty

Done PISTIS
.OUS.
10,
PISTIS
.OUS.
11

US_06
Data
Provider

check the data
before sharing
them (with
official rules)

I can be sure
everything is
in the
correct form

Beta

smart
contract
check
functionali
ty

Done PISTIS
.OUS.
10,
PISTIS
.OUS.
11

US_07
Data
Consumer

each data trade I
perform to be
checked (with
official rules)

I can be sure
of the data
validity and
correctness

Beta

smart
contract
check
functionali
ty

Done PISTIS
.OUS.
10,
PISTIS
.OUS.
11

US_08

Data
Provider,
Data
Consumer

be sure that
before data
sharing that do
not violate and
policy (with
official rules)

I can be sure
that no
issues will
be arise

Beta

smart
contract
check
functionali
ty

Done PISTIS
.OUS.
10,
PISTIS
.OUS.
11

5.2.4 FUNCTIONAL REQUIREMENTS
This section provides the functional requirements of the component.

101093016 - PISTIS - HORIZON-CL4-2022-DATA-01-04

D2.3 - Data Management and Protection services - Beta version Page 83 of 144

ID Description
Related Use

Cases
Comments

FR_01 Smart Contract Checker supports
checking potential violations of a
smart contract.

UC_1, UC_2,
UC_3, UC_4, UC_5

These could be on
the GDPR
compliance, on the
smart contract
business logic, on the
monetary values
needed for the
transaction etc.

5.2.5 NON-FUNCTIONAL REQUIREMENTS
The following table presents the non-functional requirements of the component (if any).

Requirement
Sub-category

Id Description (Detailed description of the requirement)

Performance
efficiency

NFR1
Smart Contract check should be performed in efficient way.

Reliability NFR2 Smart Contract check result should be a reliable report.

Security NFR3 Only authorised components can trigger smart contract checks.

5.2.6 COMPONENT ARCHITECTURE
The Smart Contract Checker tool is designed to validate the integrity and compliance of smart

contracts through a two-step analysis process. It begins with the 'Authenticity Check' module

that verifies the originality and correctness of the contract code against predefined standards.

Following this, the 'Violations Check' module scans for any breaches of contractual or

regulatory rules embedded within the contract logic. The results from these modules are

compiled into the 'Smart Contract Checker Result', which details the status of the contract in

terms of both authenticity and legal compliance. This systematic approach helps ensure that

smart contracts are both genuine and adhere to all applicable laws and regulations.

101093016 - PISTIS - HORIZON-CL4-2022-DATA-01-04

D2.3 - Data Management and Protection services - Beta version Page 84 of 144

Figure 39: Smart Contract Checker High Level Architecture

5.2.7 TECHNOLOGY BACKGROUND
The Smart Contract Checker component utilizes modern web technologies to provide

compliance solutions in order to filter the provided Smart Contract under a set of rules. At its

core, the system is developed using Node.js and the application logic and compliance rules

are implemented in TypeScript.

For its interfacing with other components and external clients, the Smart Contract Checker

exposes RESTful APIs. These APIs allow for a standardized way of communicating with other

parts of the system, facilitating requests for data validation, retrieval of compliance reports,

and submission of privacy policies for analysis.

5.2.8 GRAPHICAL USER INTERFACE
This is a backend component, and therefore no UI is available.

5.2.9 DEVELOPER DOCUMENTATION

The developer documentation for the Smart Contract Checker component may be accessed

on the official PISTIS project documentation site at the following link: https://docs.pistis-

market.eu/developers/smart-contract-checker/smart-contract-checker

101093016 - PISTIS - HORIZON-CL4-2022-DATA-01-04

D2.3 - Data Management and Protection services - Beta version Page 85 of 144

5.2.10 SOURCE CODE
The source code of the Smart Contract Checker (SCC) component is maintained in a private

GitHub repository under the PISTIS project, accessible only to the PISTIS consortium and the

reviewers at

https://github.com/PISTIS-Platform/besu_ledger-scee-scc-gdpr-checker/tree/main/node-

server/src/checkers/smartContractChecker

While the SCC is conceptually distinct, it is technically integrated within the same Node.js

server as the Smart Contract Execution Engine (SCEE) and the GDPR Checker, all hosted in the

same repository. Additionally, the repository includes the Data Ledger implementation,

developed using the Hyperledger Besu Quorum framework, providing a unified solution for

these interconnected components. The attached link leads to the SCC's implementation logic

within this comprehensive repository.

https://github.com/PISTIS-Platform/besu_ledger-scee-scc-gdpr-checker/tree/main/node-server/src/checkers/smartContractChecker
https://github.com/PISTIS-Platform/besu_ledger-scee-scc-gdpr-checker/tree/main/node-server/src/checkers/smartContractChecker

101093016 - PISTIS - HORIZON-CL4-2022-DATA-01-04

D2.3 - Data Management and Protection services - Beta version Page 86 of 144

6 AI & INTEROPERABILITY REPOSITORIES BUNDLE

The AI & Interoperability Repos bundle provides the different repositories for storing and

propagating different models (data models, AI models and metadata models) that need to be

consumed by the different components.

This bundle consists of the following components:

• PISTIS Models Repository

• Data Factory ML Models Repository

• AI Model Editor

These are presented in the following sub-sections.

6.1 PISTIS MODELS REPOSITORY

6.1.1 COMPONENT DESCRIPTION
The PISTIS Models Repository is responsible for the storage, management, and governance of

all models that are to be used by the different PISTIS components.

These models include:

• Data models that define entities, attributes, and relationships within a specific domain.

Data providers must use the data models when describing their actual data and a browser

for these models will be available.

• Metadata models that define the metadata that shall be provided to accompany each

dataset traded over PISTIS. This repository is s based on the RDF standard and established

sub-standards, such as DCAT and Gaia-X self-descriptions. The Data Catalogue component

reads the metadata models during its start-up process to configure itselves accordingly.

Additionally, the Metadata Model Management ensures the automatic generation of a

machine-and-human-readable documentation.

• Monetisation AI models, which are used by the analytics engine residing in the Cloud

platform to accommodate the needs of the PISTIS Market Insights component.

The PISTIS Models Repository also supports version control for the PISTIS models, allowing

users to track changes over time, which is crucial for managing updates and ensuring

consistency across the whole PISTIS ecosystem. It also maintains metadata associated with

each data model, providing information about its version, size, and creation/last update date.

Users can search and retrieve specific data models based on various criteria, facilitating easy

access to relevant information.

The PISTIS Platform administrator is the role that maintains the models and can upload new

artefacts and fill-in new metadata information on the existing ones, as well as to remove

specific models.

101093016 - PISTIS - HORIZON-CL4-2022-DATA-01-04

D2.3 - Data Management and Protection services - Beta version Page 87 of 144

6.1.2 MAIN IMPROVEMENTS IN BETA VERSION

In this version, the PISTIS Models Repository also offers to the PISTIS Platform Administrators

the option to download or delete a model from the repository.

6.1.3 COMPONENT BACKLOG
This section provides the full set of features that belong to the backlog of the component.

ID #

Use Case
Backlog
Priority

Acceptance
Criteria

Status WP1
User
Stories As a <Role> I want to <Action>,

so that
<Reason>

UC_01
PISTIS Platform
administrator

view all the content
available in the
PISTIS models repo

I am aware of
the available
models and
artefacts

Alpha

Display all
contents
(models,

artefacts) of
the repo

Done

PISTIS.
SOUS.

02

UC_02
PISTIS Platform
administrator

upload an artefact in
the repo

it can become
available to the
other
components

Alpha

Uploaded
artefact

visible in the
PISTIS

Repository

Done

PISTIS.
SOUS.

02

UC_03
PISTIS Platform
administrator

edit the description
and metadata of an
artefact in the repo

other viewers
can
understand
more about it.

Alpha

Display new
model

description
and

metadata

Done

PISTIS.
SOUS.

02

UC_04
Data Factory
Component

get a view of the
repositories
contents via API

I can see what
is inside

Alpha

APIs
available

Done

PISTIS.
SOUS.

02

UC_05
Data Factory
Component

be able to get a
specific model

I can use it
internally

Alpha

Model File
downloaded/

saved

Done

PISTIS.
SOUS.

02

UC_06
PISTIS Platform
administrator

add a new version of
a model

I keep version

Alpha

New version
of the model

added

Done

PISTIS.
SOUS.

02

UC_07
PISTIS Platform
administrator

select an artefact of
the repo

I can download
it

Beta

artefact
downloaded/

saved

Done

PISTIS.
SOUS.

02

UC_08
PISTIS Platform
administrator

select multiple
artefacts of the repo

I can download
them

V1.00

Selected
artefact

downloaded/
saved

Upcom
ing

PISTIS.
SOUS.

02

UC_09
PISTIS Platform
administrator

select an artefact of
the repo

I can delete it Beta
Selected
artefact
deleted

Done

PISTIS.
SOUS.

02

UC_10
PISTIS Platform
administrator

select multiple
artefacts of the repo

I can delete
them

V1.00
Selected
artefacts
deleted

Upcom
ing

PISTIS.
SOUS.

02

UC_11
PISTIS Platform
administrator

Remove selected
artefacts of the repo

They are no
longer part of
the repository

V1.00
Selected
artefacts
deleted

Upcom
ing

PISTIS.
SOUS.

02

101093016 - PISTIS - HORIZON-CL4-2022-DATA-01-04

D2.3 - Data Management and Protection services - Beta version Page 88 of 144

6.1.4 FUNCTIONAL REQUIREMENTS
This section provides the functional requirements of the component.

ID Description Related Use Cases Comments

FR_01 The PISTIS Models Repository shall provide a user-
friendly interface allowing the Platform
administrator to
view/edit/download/delete/manage the PISTIS data
models.

US_01, US_02,
US_03, US_07,
US_08, US_09,
US_10, US_11

FR_02 The PISTIS Models Repository shall enable the model
Administrator to create a new model and populate it
along with its metadata.

US_02, US_03

FR_03 The PISTIS Models Repository shall enable the
Platform administrator to edit the metadata of an
existing model.

US_03

FR_03 The PISTIS Models Repository shall enable the
Platform administrator to upload a new version of an
existing model.

US_06

6.1.5 NON-FUNCTIONAL REQUIREMENTS
The following table presents the non-functional requirements of the component (if any).

Requirement
Sub-category

Id Description (Detailed description of the requirement)

Performance
efficiency

NFR1
The overall process shall be performed without delays and should not
consume unnecessary system resources.

Reliability NFR2
The component shall operate in a reliable manner, providing reliable
information to the PISTIS Model Manager.

Security
NFR3 The overall process shall be made through secure communication

channels.

6.1.6 COMPONENT ARCHITECTURE
The PISTIS Models Repository consists of the following components:

• Frontend Repository Management Service: The user interface (dashboard) that
enables users (Platform Administrators) to take actions, related to upload new data
artefact, edit the existing models, etc.

• PISTIS Model Manager Backend: This component executes the user’s actions (upload,
edit, delete), communicating with the Global Model Storage towards retrieving and/or
updating the available models, uploading new ones, etc.

• Data Models Repository: Refers to the actual storage facility where the models (as
files) are residing.

• Repository Exposure API: The API gateway used by the other component to read the
models that are stored in the repository.

101093016 - PISTIS - HORIZON-CL4-2022-DATA-01-04

D2.3 - Data Management and Protection services - Beta version Page 89 of 144

Figure 40: PISTIS Model Repository Internal Architecture

6.1.7 TECHNOLOGY BACKGROUND
The PISTIS Models Repository will offer a frontend service, developed in Nuxt.js and Vue.js,

delivering the UI where the PISTIS data model Administrator will be able to generate, upload

edit and manage the PISTIS data models.

For the backend services of this component and regarding the data, and the Monetisation AI

models, Nest.js will be exploited, while intra-component communication will be facilitated

with Rest APIs.

For the Metadata Model repository, the technology stack to be used includes SHACL, OWL,

SKOS, DCAT-AP for Data Spaces, as well as Custom SHACL Extensions.

6.1.8 GRAPHICAL USER INTERFACE
The PISTIS Models Repository enables the PISTIS Administrator to view the list of the models

residing in the repository as shown below.

101093016 - PISTIS - HORIZON-CL4-2022-DATA-01-04

D2.3 - Data Management and Protection services - Beta version Page 90 of 144

Figure 41: PISTIS Models Repository – Models Management

The PISTIS Administrator has the option to upload a new artefact through the interface

depicted below.

Figure 42: PISTIS Models Repository – Upload of New Artefact

101093016 - PISTIS - HORIZON-CL4-2022-DATA-01-04

D2.3 - Data Management and Protection services - Beta version Page 91 of 144

The PISTIS Administrator has the option to download or delete a model as shown below.

Figure 43: PISTIS Models Repository – Download/Delete an Artefact

When the PISTIS Administrator deletes a model, a popup message appears to confirm the

deletion.

Figure 44: PISTIS Models Repository – Delete confirmation

101093016 - PISTIS - HORIZON-CL4-2022-DATA-01-04

D2.3 - Data Management and Protection services - Beta version Page 92 of 144

6.1.9 DEVELOPER DOCUMENTATION
The developer guide for this component is available here:

https://docs.pistis-market.eu/developers/models-repository/models-repository

6.1.10 SOURCE CODE
The source code of this component is available to consortium and reviewers here:

• Backend: https://github.com/PISTIS-Platform/components-monorepo

• Frontend: https://github.com/PISTIS-Platform/cloud-ui

6.2 DATA FACTORY ML MODELS REPOSITORY

6.2.1 COMPONENT DESCRIPTION

The Data Factory ML Models repository will provide support for CRUD and serving operations

over a concrete pre-trained model.

This repository is essentially a similar deployment of the PISTIS Models Repository, but

concerns only ML models which can be uploaded by Data Factory users to run analyses over

their own data, while they can also fetch already Pre-trained ML models from the PISTIS

Models Repository

6.2.2 MAIN IMPROVEMENTS IN BETA VERSION

The following improvements have been introduced in beta version:

• Fetch a Model from the PISTIS Models Repository

• Serve a Model

6.2.3 COMPONENT BACKLOG
This section provides the full set of features that belong to the backlog of the component.

ID #
Use Case

Backlog
Priority

Acceptance
Criteria

Status WP1
User

Stories As a <Role> I want to <Action>, so that <Reason>

UC_01 User Add a Model Add a Model Alpha Model added

Done PISTIS.
OUS.0

3

https://docs.pistis-market.eu/developers/models-repository/models-repository
https://github.com/PISTIS-Platform/components-monorepo
https://github.com/PISTIS-Platform/cloud-ui

101093016 - PISTIS - HORIZON-CL4-2022-DATA-01-04

D2.3 - Data Management and Protection services - Beta version Page 93 of 144

UC_02 User

Fetch a Model from

the PISTIS Models

Repository

Keep Model
updated

Beta
Model
descriptions
updated

Done PISTIS.
OUS.0

3

UC_03 User Serve a Model

Enabling trained
models are
made available
for others to use

Beta
Model
served

Done PISTIS.
OUS.0

3

UC_04 User
Add or Updating
Model Descriptions

Update
descriptions over
the model

Alpha
Model
updated

Done PISTIS.
OUS.0

3

UC_05 User
Edit a Model’s
Metadata

Support new
naming

Alpha
Model
renamed

Done PISTIS.
OUS.0

3

UC_06 User
List and searching
Models

Found Models Alpha
Check
searching

Done PISTIS.
OUS.0

3

UC_07 User Archive a Model Archive Model Alpha
Model
archived

Done PISTIS.
OUS.0

3

UC_08 User Delete Models Delete Models Alpha
Model
deleted

Done PISTIS.
OUS.0

3

6.2.4 FUNCTIONAL REQUIREMENTS

This section provides the functional requirements of the ML Model Repository component:

ID Description
Related Use

Cases
Comments

FR_01 Manage storing of Pre-trained AI
Models.

UC1, UC2, UC4,
UC5, UC6, UC7,
UC8

FR_02 Serve Pre-trained AI Models. UC3

6.2.5 NON-FUNCTIONAL REQUIREMENTS
The following table presents the non-functional requirements of the component (if any).

Requirement
Sub-category

Id Description (Detailed description of the requirement)

Security NFR1 PISTIS ensures that only authorised user can register datasets.

6.2.6 COMPONENT ARCHITECTURE

As it is shown in Figure 45, the architecture of the ML model repository is built mostly on the

use of MinIO as the primary technology for ML model repository. The Rest API merely exposes

101093016 - PISTIS - HORIZON-CL4-2022-DATA-01-04

D2.3 - Data Management and Protection services - Beta version Page 94 of 144

a collection of functions related to an ML model's life cycle and, via an internal proxy, connects

to the MinIO backend.

Figure 45: ML Model Repo Architecture

6.2.7 TECHNOLOGY BACKGROUND
The main technology used for the Component is MinIO integrated with MLFLow.

6.2.8 GRAPHICAL USER INTERFACE

The ML Model Repository's UI will not involve GUI development. The MinIO Console is

intended to be used as a result of the MinIO technology stack being used. Consequently, MinIO

Console will serve as the GUI for our component, assisting with administration tasks such as

Identity and Access Management, Metrics and Log Monitoring, and server configuration. The

MinIO Console is incorporated in the MinIO Server, which is part of the ML Model Repository

component. A screenshot of MinIO Console is shown in Figure 46.

101093016 - PISTIS - HORIZON-CL4-2022-DATA-01-04

D2.3 - Data Management and Protection services - Beta version Page 95 of 144

Figure 46: MinIO GUI

6.2.9 DEVELOPER DOCUMENTATION
Because the ML Model Repository component is built on MLFlow/MinIO integration, which is

a third-party technology, the component's documentation is publicly available at

https://mlflow.org/docs/1.30.0/index.html for MLFlow and https://min.io/docs/kes for

MinIO.

6.2.10 SOURCE CODE

The ML Model Repository component is based on 3rd party technology called MinIO whose

open-source repository is accessible at https://github.com/minio/minio.

6.3 AI MODEL EDITOR

6.3.1 COMPONENT DESCRIPTION
The AI Model Editor will provide support for creating, editing, and sharing computational AI

models.

AI Model Editor will allow the end user to cover a basic workflow that includes at least the

following tasks:

• Create a project enabling collaboration (or not) with others to work with data.

• Add a notebook to the project.

• Add code and run the notebook.

• Review the model pipelines and save the desired pipeline as a model.

• Deploy and test a concrete model.

https://mlflow.org/docs/1.30.0/index.html
https://min.io/docs/kes
https://github.com/minio/minio

101093016 - PISTIS - HORIZON-CL4-2022-DATA-01-04

D2.3 - Data Management and Protection services - Beta version Page 96 of 144

6.3.2 MAIN IMPROVEMENTS IN BETA VERSION

The following improvements have been introduced in beta version:

• Deploy and test a concrete model.

• Fetch a Model from the PISTIS Models Repository.

6.3.3 COMPONENT BACKLOG
This section provides the full set of features that belong to the backlog of the component.

ID

Use Case
Backlog
Priority

Acceptance
Criteria

Status WP1
User

Stories As a <Role>
I want to
<Action>,

so that <Reason>

UC_01
Data
Consumer

Create a project
with the AI editor

Manage AI
Models

Alpha
Check project
created
properly

Done PISTIS.
OUS.0

3,
PISTIS.
OUS.0

7

UC_02
Data
Consumer

Add a notebook
to project

Manage AI
Models

Alpha
Notebook
added properly

Done PISTIS.
OUS.0

3,
PISTIS.
OUS.0

7

UC_03
Data
Consumer

Add code and run
the notebook

Manage AI
Models

Alpha
Check the
notebook code

Done PISTIS.
OUS.0

3,
PISTIS.
OUS.0

7

UC_04
Data
Consumer

Review the model
pipelines and save
the desired
pipeline as a
model

Manage AI
Models

Alpha
Check that
model saved
exists

Done PISTIS.
OUS.0

3,
PISTIS.
OUS.0

7

UC_05
Data
Consumer

Deploy and test a
concrete model

Deploy and test AI
Models

Beta
Model
accessible to be
tested.

Done PISTIS.
OUS.0

3,
PISTIS.
OUS.0

7

6.3.4 FUNCTIONAL REQUIREMENTS

This section provides the functional requirements of the ML Model Editor:

101093016 - PISTIS - HORIZON-CL4-2022-DATA-01-04

D2.3 - Data Management and Protection services - Beta version Page 97 of 144

ID Description
Related Use

Cases
Comments

FR_01 Create, edit, and sharing
computational AI models.

UC1, UC2, UC3,
UC4 and UC5

6.3.5 NON-FUNCTIONAL REQUIREMENTS
There are no non-functional requirements at the moment.

6.3.6 COMPONENT ARCHITECTURE

Regarding the ML Model Editor component, reusing current open-source technologies is the

preferred approach over developing the component itself. Since Jupyter Lab was the

technology chosen in this instance, Figure 47, which displays the many architectural layouts

of the essential components of the Jupyter ecosystem, can be used as a point of reference.

Figure 47: AI Model Editor Architecture10

10 https://docs.jupyter.org/en/latest/projects/architecture/content-architecture.html

101093016 - PISTIS - HORIZON-CL4-2022-DATA-01-04

D2.3 - Data Management and Protection services - Beta version Page 98 of 144

6.3.7 TECHNOLOGY BACKGROUND
The main technology used for the Component is Jupyter Notebook.

6.3.8 GRAPHICAL USER INTERFACE

In the case of the ML Model Editor component, the development of a UI itself is not

contemplated but rather the use of GUI associated with the technology used for said

component, which is Jupyter Lab.

The Jupyter Lab interface consists of a primary work area with tabs for documents and
activities, a collapsible left sidebar, and a menu bar. The left sidebar includes a file browser, a
list of running kernels and terminals, the command palette, the notebook cell tools inspector,
and a list of tabs.

A screenshot of Jupyter Lab UI is shown in Figure 48.

Figure 48: Jupyter Lab UI.

6.3.9 DEVELOPER DOCUMENTATION
The documentation for the ML Model Editor component is publicly available at

https://jupyterlab.readthedocs.io/en/latest since it is based on the third-party technology

Jupyter Lab.

https://jupyterlab.readthedocs.io/en/latest

101093016 - PISTIS - HORIZON-CL4-2022-DATA-01-04

D2.3 - Data Management and Protection services - Beta version Page 99 of 144

6.3.10 SOURCE CODE
The ML Model Editor component is based on 3rd party technology called Jupyter-Lab whose

open-source repository is accessible at https://github.com/jupyterlab/jupyterlab.

7 SECURITY, TRUST & PRIVACY PRESERVATION BUNDLE

The Security, Trust & Privacy Preservation bundle offers services for strengthening data

security and privacy.

This bundle consists of the following components:

• Anonymizer

• Lineage Tracker

• GDPR checker

• Searchable Encryption

• Encryption/Decryption Engine

• Access Policy Editor

These are presented in the following sub-sections.

7.1 ANONYMIZER

7.1.1 COMPONENT DESCRIPTION

The anonymiser is a component responsible for preserving data privacy. It alters data in such

a way that it will preserve its usefulness but hides the original data. With these modifications,

it cannot be traced back to the individuals the data was taken from.

The anonymiser is capable of taking a dataset and obfuscating the contained data by replacing

it with values that represent the original data in a way that is non-identifying (e.g. an age of

29 may be replaced with [20-30] or a name Darren Smith may be replaced with Darren *****).

This is known as data masking.

Via the frontend interface, users will be able to configure the anonymisation process by

selecting different anonymisation pre-sets, which can be applied to a column in their dataset,

or they can use advanced settings to allow for more configurability in their anonymisation. To

see how their choices will impact the result, a preview button is available. Upon clicking this

button, users will see a subset of their dataset with their current anonymisation options

applied to it. This will help users understand the impact of their choices.

The PseudoID generator is a smaller component, capable of producing a unique ID for a user

who wishes to share their data as an anonymous user. This ID may then be used for the

purposes of communication with the data provider whilst preserving their anonymity.

https://github.com/jupyterlab/jupyterlab

101093016 - PISTIS - HORIZON-CL4-2022-DATA-01-04

D2.3 - Data Management and Protection services - Beta version Page 100 of 144

The Anonymizer also supports ‘Location Privacy’. ‘Location Privacy’ is defined as “the ability

of an individual to move in public space with the expectation that under normal circumstances

their location will not be systematically and secretly recorded for later use”.

The existence of location databases stripped of identifying tags can leak information. For

instance, if I know that Vera is the only person who lives on Dead End Lane, the datum that

someone used a location-based service on Dead End Lane can be reasonably linked to Vera.

Since location privacy definition and requirements differ depending on the scenario, no single

technique is able to address the requirements of all location privacy categories. Therefore, in

the past, the research community, focusing on providing solutions for the protection of

location privacy of users, has defined techniques that can be divided into three main classes:

anonymity-based, obfuscation-based, and policy-based techniques. These classes of

techniques are partially overlapped in scope and could be potentially suitable to cover

requirements coming from one or more of the categories of location privacy.

It is easy to see that anonymity-based and obfuscation-based techniques can be considered

dual categories. Anonymity-based techniques have been primarily defined to protect identity

privacy and are not suitable for protecting position privacy, whereas obfuscation-based

techniques are well suited for position protection and not appropriate for identity protection.

Anonymity-based and obfuscation-based techniques could also be both exploited for

protecting path privacy. Policy-based techniques are in general suitable for all location privacy

categories, although they are often difficult to understand and manage for end users.

It is important to consider the notion of utility within the context of anonymising location data

– if the data seeker is looking to understand different groups mobility patterns to inform public

transport planning for example accurate location data over time at scale is imperative.

Therefore, supporting location privacy has to also consider the impact on the utility of that

data – it will impact the monetary value of that data if the necessary insights can no longer be

reliably derived from that data.

Location Privacy as a result is supported through a mechanism to generate new Synthetic Data

that has the same format and statistical properties as the original location data.

Synthetic data can then be used to supplement, augment and in some cases replace real data

when training Machine Learning models. Additionally, it enables the testing of Machine

Learning or other data dependent software systems without the risk of exposure that comes

with data disclosure.

101093016 - PISTIS - HORIZON-CL4-2022-DATA-01-04

D2.3 - Data Management and Protection services - Beta version Page 101 of 144

7.1.2 MAIN IMPROVEMENTS IN BETA VERSION

Synthetic Data Generator

The synthetic data generator is a module that produces artificial datasets designed to replicate

the statistical properties and structural patterns of real-world data. It uses advanced

techniques, powered by deep learning, to create data that is not linked to any actual

individuals but still mirrors the complexity and variability of authentic datasets. This approach

is particularly valuable for overcoming challenges related to data scarcity, privacy, and

regulatory constraints, allowing organizations to generate large-scale, customised datasets on

demand for analytics, software testing, and machine learning applications. Because synthetic

data is not derived from real individuals, it can be freely shared and used in environments

where the use of genuine personal data would be restricted or require significant compliance

efforts.

The benefits of synthetic data generation go beyond privacy. Synthetic data can be tailored to

address specific needs, such as balancing underrepresented classes in a dataset or removing

biases present in the original data. This flexibility enables data scientists and organizations to

accelerate development cycles, reduce costs, and enhance the performance of AI models by

providing more diverse and representative training data. Furthermore, synthetic data serves

as a safe and fully anonymous alternative to real data, making it a powerful tool for industries

with strict privacy requirements, such as healthcare, finance, and telecommunications

Risk of Reidentification

The risk of re-identification module refers to the possibility that anonymised or de-identified

data could be matched with external information to reveal the identity of individuals whose

data was meant to remain confidential. This risk arises because even after direct identifiers

(like names or social security numbers) are removed, unique combinations of quasi-identifiers

(such as age, gender, and ZIP code) can still make it possible to single out individuals, especially

when auxiliary datasets are available for cross-referencing. Advances in data analytics and the

proliferation of publicly available data have made re-identification increasingly feasible,

challenging traditional anonymisation methods and raising concerns about the true

effectiveness of data de-identification.

The consequences of re-identification are significant for both individuals and organizations. If

re-identification occurs, it can lead to privacy violations, regulatory penalties under laws like

GDPR and HIPAA, and a loss of trust among customers or patients. Organizations may also

suffer reputational damage and face public backlash if they are found to have inadequately

protected sensitive information. As a result, robust risk assessment and mitigation strategies

are essential components of any data anonymisation process, ensuring that the likelihood of

re-identification is minimized before data is shared or analysed.

101093016 - PISTIS - HORIZON-CL4-2022-DATA-01-04

D2.3 - Data Management and Protection services - Beta version Page 102 of 144

7.1.3 COMPONENT BACKLOG
This section provides the full set of features that belong to the backlog of the component.

ID #

Use Case
Backlog
Priority

Acceptance
Criteria

Status

As a <Role> I want to <Action>,
so that
<Reason>

UC_01 Data Provider
apply anonymisation
to my data

personal
information can
be hidden

Alpha

Data Provider
is able to hide
Personally
Identifiable
Information
(PII) from the
Data Seeker

Done

UC_02 Data Provider create a fake ID
to hide my real
ID that my data
belongs to

Alpha

Data Provider
is able to
generate a
Pseudo
Identity to
hide their real
identity

Done

UC_03 Data Provider
be able to select a
pre-set
anonymisation level

I can anonymise
data using a
specific
approach

Alpha

Data Provider
is able to
select the
anonymisatio
n approach
they wish to
apply to the
dataset

Done

UC_04 Data Provider

Be able to have more
granular control over
the anonymisation
configuration

I have flexibility
over how my
data is shared

Alpha

Data Provider
is able to
control the
settings
within an
anonymisatio
n pre-set

Done

UC_05 Data Provider

Generate Synthetic
Data with same
properties as my data

It is harder to
attribute the
data back to me

Beta

Data Provider
is able to
create an
equivalent
synthetic
dataset that
has the same
mathematical
and statistical
properties as
the original
real dataset

Done

7.1.4 FUNCTIONAL REQUIREMENTS
This section provides the functional requirements of the component.

ID Description
Related Use

Cases
Comments

FR_01 Allow the user to select what data columns they want to
anonymise.

PISTIS.OUS.03

101093016 - PISTIS - HORIZON-CL4-2022-DATA-01-04

D2.3 - Data Management and Protection services - Beta version Page 103 of 144

FR_02 Allow the user to customise what anonymisation level they
wish to apply to their data.

PISTIS.OUS.03

FR_03 Present a preview of the result of the users selected
anonymisation configuration.

PISTIS.OUS.03

FR_04 Remove Personally Identifiable Information (PII) or other
sensitive data.

PISTIS.OUS.03

FR_05 Obfuscate PII or other sensitive data. PISTIS.OUS.03

FR_06 Obfuscate Location Data PISTIS.OUS.03

FR_07 Data Swapping PISTIS.OUS.03

FR_08 Inject random statistical noise into statistical and
machine-learning analyses carried out over the data.

PISTIS.OUS.03

FR_09 Present a preview of an anonymised dataset. PISTIS.OUS.03

7.1.5 NON-FUNCTIONAL REQUIREMENTS
The following table presents the non-functional requirements of the component (if any).

Requirement
Sub-category

Id Description (Detailed description of the requirement)

Functional
Suitability

NFR1
effectively anonymises user data, obscuring identifiable information
such as IP addresses, geographic location, and other personally
identifiable information (PII).

Performance
efficiency

NFR2

The anonymizer should provide acceptable performance levels,
including minimal latency and high throughput, to ensure a smooth user
experience. Performance requirements may vary depending on factors
such as the number of users, the volume of traffic, and the complexity
of anonymization algorithms.

Scalability NFR3

The anonymizer should be able to scale horizontally or vertically to
accommodate increasing user demand and traffic volume without
compromising performance or availability. This may involve deploying
additional resources dynamically or optimizing resource utilization

Availability NFR4
should be highly available, with minimal downtime or service
interruptions, to ensure continuous access for users

Reliability NFR5

The anonymizer should be reliable and dependable, consistently
delivering accurate anonymization results and maintaining data
integrity. This includes error handling mechanisms, data validation
checks, and proactive monitoring to detect and address potential issues.

Security
NFR6 employ robust security measures to protect user data from

unauthorised access, interception, or tampering

Compliance

NFR7 The anonymizer should comply with relevant legal and regulatory
requirements governing data privacy, security, and anonymity. This may
include compliance with regulations such as GDPR, CCPA, HIPAA, and
industry-specific standards for data protection.

Usability NFR8 The anonymizer should be user-friendly and easy to use, with intuitive
interfaces and clear documentation. Users should be able to configure
anonymization settings, monitor system status, and access support
resources conveniently.

101093016 - PISTIS - HORIZON-CL4-2022-DATA-01-04

D2.3 - Data Management and Protection services - Beta version Page 104 of 144

7.1.6 COMPONENT ARCHITECTURE
The figure below shows the internal architecture of the anonymiser. Its main elements include

support for all the functionality described in Section 7.1.7. The anonymizer system is built on

a combination of Python and Java technologies, designed to anonymize datasets while

connecting to an external Postgres database for data storage during transformations. Key

prerequisites include Python with Flask for API functionality, Pandas for data processing,

SQLAlchemy for database integration, Presidio for PII identification, Spring Boot for Java-

based API services, JPA for database interactions, and ARX Deidentifier for k-Anonymity

operations. The architecture centres on a single Docker container hosting a Python API

(handling core workflows), a Java Spring Boot API (managing k-Anonymity), and Nginx for

routing between APIs and external access. It connects to an external Postgres instance

(“Internal Postgres Database”), configured via environment variables (POSTGRES_USER,

POSTGRES_PASSWORD, etc.). This database stores dataset metadata and temporary tables,

with table names derived from user UUIDs (e.g., _19e923121fba45c692a28ab8bc7882ea).

Functionality includes:

• Obfuscation: Applied via mask classes (extending BaseMask), which define

transformations per column using properties like name, data_type, and config.

• Sensitivity Reports: Generated by Presidio, classifying columns by PII type (e.g.,

PHONE_NUMBER) and sensitivity level (e.g., SENSITIVE).

• Synthetic Data: Created using the sdv library to replicate dataset structure.

k-Anonymity: Implemented via ARX, using quasi-identifiers and generalization

hierarchies to anonymize data while assessing re-identification risks through ARX’s

prosecutor model. The system processes datasets by staging them in Postgres,

applying configured masks or k-Anonymity, and outputting anonymized results.

Figure 49: Component’s Internal Architecture

101093016 - PISTIS - HORIZON-CL4-2022-DATA-01-04

D2.3 - Data Management and Protection services - Beta version Page 105 of 144

7.1.7 TECHNOLOGY BACKGROUND
The anonymiser consists of a few modularized components. The k-Anonymity provided by the

anonymiser will be supported by a dockerized java application using a Spring Boot API. The

rest of the anonymisation functionality (deletion, data masking, location anonymisation,

differential privacy and pseudonymization) will be supported by a dockerized python

application with a Flask API as an interface. These two components will use APIs to

communicate internally while a third outward facing Flask API with a uWSGI server provides

accessibility to all anonymisation functions from a single API.

7.1.7.1 Anonymiser Technical Details

K-Anonymity

The main functionality of the anonymiser is handled by the ARX data anonymisation java

library. The anonymiser uses a k-Anonymity algorithm from the ARX library to remove

identifying attributes from a dataset based on parameters provided by the user. This is

supported by Jackson to convert the dataset and dataset structure to a format that is readable

by ARX.

The API functionality is supported by Spring Boot. This is responsible for deploying the

application on port 8080 of the localhost and exposing the API methods for external use.

Deletion

Based on user selection the anonymiser will delete columns and/or rows containing personally

identifiable information and/or sensitive data within a dataset.

Data Masking

The Pandas Python Library provides a basic data masking capability. It can be used to

obfuscate data by targeting either whole columns or using conditional statements to isolate

target values. To increase the variety of masking capabilities we use msticpy to provide

hashing functions that we can apply to data while preserving syntax. For example, we may

want to provide a hash of an email while preserving its syntax. Msticpy provides syntax

preserving hashing for the following formats: string with delimiters; both IPv4 and IPv6

addresses; Several string ID formats such as SID and GUID; Account names while ignoring

system names such as root and NT AUTHORITY/SYSTEM; and more. These functions are used

both on a single data item or entire DataFrames. These functions are only intended to mask

data. No real attempt is made to preserve the syntax and meaning of the output.

Pseudonymisation

This will be supported through the use of the open-source python package called Faker. It is a

package that generates fake data by selecting random entries in a database of values based

on the category. Faker has a variety of categories such as names, addresses, phone numbers,

dates/time, emails, etc.

101093016 - PISTIS - HORIZON-CL4-2022-DATA-01-04

D2.3 - Data Management and Protection services - Beta version Page 106 of 144

By creating an instance of the faker generator and selecting a category a pseudonym

correlating to that category will be generated and returned for use in the dataset. Below is an

example of its use (code in black, results in blue).

from faker import Faker

fake = Faker()

fake.name()

'Lucy Cechtelar'

fake.address()

'426 Jordy Lodge, Cartwrightshire, SC 88120-6700'

fake.text()

'Sint velit eveniet. Rerum atque repellat voluptatem quia rerum. Numquam

excepturi beatae sint laudantium consequatur. Magni occaecati itaque sint

et sit tempore. Nesciunt amet quidem. Iusto deleniti cum autem ad quia

aperiam. A consectetur quos aliquam. In iste aliquid et aut similique

suscipit. Consequatur qui quaerat iste minus hic expedita. Consequuntur

error magni et laboriosam. Aut aspernatur voluptatem sit aliquam. Dolores

voluptatum est. Aut molestias et maxime. Fugit autem facilis quos vero.

Eius quibusdam possimus est. Ea quaerat et quisquam. Deleniti sunt quam.
Adipisci consequatur id in occaecati. Et sint et. Ut ducimus quod nemo ab

voluptatum.'

Faker Optimisations

The Faker constructor takes a performance-related argument called use_weighting. It

specifies whether to attempt to have the frequency of values match real-world frequencies

(e.g. the English name Gary would be much more frequent than the name Lorimer). If

use_weighting is False, then all items have an equal chance of being selected, and the

selection process is much faster. The default is True.

7.1.7.2 Anonymiser Location API Technical Details

The location handler is a python-based component responsible for the anonymisation of any

columns containing latitude and longitude data. It uses a combination of pandas, numpy and

Conditional Tabular Generative Adversarial Networks (CTGAN) from the sdv library to deliver

location anonymisation. To provide an internal API to pass data between the Anonymiser it

uses Flask to implement an API.

CTGAN is a Generative Adversarial Networks (GAN) based model used to model tabular data

distribution and sample rows from the distribution. Its primary focus is generating synthetic

data that maintains the trends of the original data whilst removing identifiable features of the

original.

GAN algorithms are algorithms typically used for generating synthetic data particularly in

video, voice, and image generation. The algorithm works by initialising two separate networks,

one called the generator and one called the discriminator. The generator is fed a random input

and generates synthetic data based on this input. The discriminator is fed real data and

determines whether the synthetic data generated by the generator is fake or real. Based on

101093016 - PISTIS - HORIZON-CL4-2022-DATA-01-04

D2.3 - Data Management and Protection services - Beta version Page 107 of 144

the judgment given by the discriminator the generator will adjust its output accordingly until

the discriminator determines that the generator is able to produce accurate synthetic data.

CTGAN is a GAN-based model focusing on using the same technology for tabular data. The

location handler uses a CTGAN algorithm configured at 450 epochs (or training cycles). The

location columns are fed to the algorithm as training data then the algorithm generates an

equal amount of synthetic data to replace the original location data. This allows it to maintain

the same trends whilst randomizing the location to conceal the true identity of the data

subject.

7.1.7.3 Synthetic Data Generator

Conditional Tabular GANs (CTGANs) are a specialized class of Generative Adversarial Networks

(GANs) designed to generate high-fidelity synthetic tabular data, addressing the unique

challenges posed by mixed data types (continuous and categorical) and imbalanced

distributions commonly found in real-world datasets.

1. Core Architecture

a. Generator and Discriminator

• Generator: Receives random noise and conditional information (e.g., specific

values for categorical columns) as input, and outputs synthetic data samples that

mimic the real data distribution.

• Discriminator: Receives both real and synthetic samples, along with their

conditional information, and learns to distinguish between authentic and

generated data.

b. Conditional Generation

CTGAN conditions both the generator and discriminator on discrete column values, enabling

the model to learn complex, multimodal distributions and generate samples for specific

subgroups of the data.

2. Data Preparation

• Continuous features should be represented as floats.

• Categorical/discrete features as integers or strings.

• Date features (if present) should be formatted appropriately (e.g., YYYY-MM-DD).

• No missing values: Impute or drop missing data before training.

• Identify discrete columns: Provide a list of categorical features to the model

3. Model Implementation

a. Installation

pip install ctgan

b. Data Loading and Preprocessing

import pandas as pd

101093016 - PISTIS - HORIZON-CL4-2022-DATA-01-04

D2.3 - Data Management and Protection services - Beta version Page 108 of 144

from ctgan import CTGAN

Load your data

data = pd.read_csv('your_data.csv')

Identify discrete (categorical) columns

discrete_columns = ['col1', 'col2', 'col3'] # Replace with your categorical

columns

c. Model Initialization and Training

ctgan = CTGAN(epochs=300, batch_size=500, verbose=True) # Adjust epochs and

batch size as needed

ctgan.fit(data, discrete_columns)

epochs: Number of training iterations; more epochs can improve fidelity but

increase training time.

batch_size: Number of samples per training batch.

d. Generating Synthetic Data

synthetic_data = ctgan.sample(1000) # Generate 1000 synthetic samples

e. Saving and Loading the Model

ctgan.save('ctgan_model.pkl')

To reload:

from ctgan import CTGAN

ctgan = CTGAN.load('ctgan_model.pkl')

4. Underlying Training Process

Adversarial Training: Generator and discriminator are trained in opposition, with the

generator aiming to fool the discriminator and the discriminator striving to correctly identify

real vs. synthetic samples.

Loss Functions:

• Generator Loss: Encourages the generator to create realistic samples that can

deceive the discriminator.

• Discriminator Loss: Trains the discriminator to distinguish between real and fake

data.

• Conditional Sampling: During training, CTGAN randomly selects a discrete column

and a value to condition on, focusing the generator on learning to produce samples

for that subgroup, which helps with imbalanced or rare categories.

5. Advanced Features and Customization

• Handling Date Features: Some CTGAN implementations support cyclical

transformations for date/time features.

• Evaluation: Compare statistical properties (e.g., distributions, correlations)

between real and synthetic data to assess fidelity.

• Integration: CTGAN can be used as part of broader synthetic data pipelines,

including privacy-preserving data sharing, model development, and data

augmentation

6. Sample End-to-End Workflow

from ctgan import CTGAN

import pandas as pd

Load and preprocess data

data = pd.read_csv('your_data.csv')

101093016 - PISTIS - HORIZON-CL4-2022-DATA-01-04

D2.3 - Data Management and Protection services - Beta version Page 109 of 144

discrete_columns = ['category1', 'category2']

Initialize and train CTGAN

ctgan = CTGAN(epochs=100)

ctgan.fit(data, discrete_columns)

Generate synthetic data

synthetic_data = ctgan.sample(1000)

synthetic_data.to_csv('synthetic_data.csv', index=False)

7.1.7.4 Risk of Reidentification

This is being implemented using the open-source libraries provided in ARX.

ARX’s risk analysis perspective provides a systematic framework for quantifying and mitigating

re-identification risks in anonymised datasets. This functionality is critical for ensuring

compliance with privacy regulations like HIPAA and GDPR, as well as for balancing data utility

with privacy preservation. Below is a detailed technical breakdown of its methodology,

grounded in the tool’s documentation and peer-reviewed research.

1. Attacker Models and Risk Scenarios

ARX evaluates re-identification risks through three distinct attacker models, each reflecting

different levels of adversarial knowledge and objectives:

a. Prosecutor Scenario

In this model, the attacker knows that a specific individual exists in the dataset and aims to re-

identify their record. ARX calculates the highest re-identification risk for any record in the

dataset by identifying quasi-identifiers (e.g., age, ZIP code) that uniquely or nearly uniquely

distinguish individuals. For example, if a combination of “Age=35, ZIP=90210, Gender=M”

appears only once, the risk for that record is 100% under this scenario.

b. Journalist Scenario

Here, the attacker lacks prior knowledge of whether the target individual is in the dataset.

Risks are calculated as the probability that a record both matches the attacker’s background

knowledge and belongs to the target individual. ARX estimates this by factoring in the

population prevalence of quasi-identifier combinations. For instance, if a quasi-identifier

combination occurs in 0.1% of the population, the risk for a matching record is 0.1%

c. Marketer Scenario

This model assumes the attacker aims to re-identify as many individuals as possible, rather

than targeting specific records. ARX computes the average success rate of such attacks by

analysing the proportion of records vulnerable to re-identification across the dataset. This

metric is particularly useful for assessing risks in marketing or research contexts where bulk

data breaches are a concern.

2. Population Uniqueness Estimation

A cornerstone of ARX’s risk analysis is its ability to estimate population uniqueness-the

likelihood that a record unique in the sample is also unique in the broader population. This is

achieved through three statistical super-population models:

101093016 - PISTIS - HORIZON-CL4-2022-DATA-01-04

D2.3 - Data Management and Protection services - Beta version Page 110 of 144

• Pitman Model (Hoshino): Suitable for datasets with sampling fractions ≤10%, this

method assumes a Pitman-Yor process to estimate the distribution of rare quasi-

identifier combinations in the population.

• Zayatz Model: A non-parametric approach that extrapolates population

uniqueness directly from sample uniqueness, ideal for datasets with homogeneous

attribute distributions.

• Chen & McNulty (SNB): Uses a smoothed bootstrap to account for sampling

variability, recommended for clinical or highly skewed datasets.

For example, if a dataset contains 10,000 records and 500 are sample-unique, ARX might

estimate (using the Pitman model) that 200 of these are also population-unique, translating

to a 4% population uniqueness rate

3. Risk Metrics and Thresholds

ARX computes several key metrics to guide anonymisation decisions:

a. Record-Level Risks

• Highest Risk: Maximum re-identification probability for any individual record (e.g.,

25% under the journalist model).

• Lowest Risk: Minimum probability across records (often 0% for well-anonymised

data).

• Average Risk: Mean re-identification probability, weighted by record frequency.

b. Threshold Compliance

Users can define acceptable risk thresholds (e.g., “No record may exceed 5% re-identification

risk under the prosecutor model”). ARX highlights violations and recommends additional

generalization or suppression to meet these criteria.

c. Unique Record Analysis

• Sample Uniques: Records unique within the dataset.

• Estimated Population Uniques: Sample uniques likely unique in the population,

calculated via the selected statistical model.

4. Quasi-Identifier Analysis

ARX’s “Finding Quasi-identifiers” view identifies attribute combinations contributing most to

re-identification risks. For instance, a dataset might reveal that {ZIP code, Date of Birth,

Gender} collectively expose 80% of records to >10% risk under the prosecutor model. The tool

ranks these combinations by:

• Separability: How effectively the combination distinguishes records (e.g., entropy-

based metrics).

• Distinctness: The number of unique values within the combination.

5. Integration with Anonymisation Workflow

Risk analysis is tightly coupled with ARX’s transformation engine:

• Pre-Anonymisation Baseline: Initial risks are assessed to identify high-risk quasi-

identifiers (e.g., “Occupation” may increase average risk from 2% to 8%).

101093016 - PISTIS - HORIZON-CL4-2022-DATA-01-04

D2.3 - Data Management and Protection services - Beta version Page 111 of 144

• Post-Anonymisation Validation: After applying k-anonymity or t-closeness, ARX

verifies that risks fall below thresholds (e.g., reducing prosecutor risk from 15% to

3%).

• Iterative Refinement: If risks remain high, users can incrementally generalize

attributes (e.g., collapsing “Age=35” to “Age=30-40”) and re-evaluate.

7.1.8 GRAPHICAL USER INTERFACE
The figure below shows the first screen for the anonymiser where the user sees a preview of

the data and gets an indication of what the sensitive attributes in the dataset are. They can

then from this screen select either data obfuscation or K-Anonymity as anonymisation

methods to apply to that dataset.

Figure 50: Initial Anonymiser Screen

101093016 - PISTIS - HORIZON-CL4-2022-DATA-01-04

D2.3 - Data Management and Protection services - Beta version Page 112 of 144

Figure 51: Anonymiser Obfuscation Utilities

The figure above shows the data preview and the suggested obfuscation settings based on

what the anonymisation detects to be sensitive attributes. The user can change the

obfuscation settings if they wish to diverge from the suggested settings.

Figure 52: Obfuscation Anonymiser Preview

In the figure above the user sees a preview of the anonymised dataset once they have selected

the obfuscation settings and decide to review the resulting transformation to the dataset.

101093016 - PISTIS - HORIZON-CL4-2022-DATA-01-04

D2.3 - Data Management and Protection services - Beta version Page 113 of 144

Figure 53: Anonymiser K-Anonymity

The figure above shows the screen for K-Anonymity and the user is shown the sensitivity

settings again for each attribute. They can then select to see possible anonymisation solutions

Figure 54: Anonymiser K-Anonymity Solutions

In the figure above the possible anonymisation solutions are shown and in the figure below

the user sees a preview of a dataset once a specific solution from the ones shown above is

selected.

101093016 - PISTIS - HORIZON-CL4-2022-DATA-01-04

D2.3 - Data Management and Protection services - Beta version Page 114 of 144

Figure 55: Preview of Dataset after K-Anonymity Solution is selected

Figure 56: Preview of a dataset after K-Anonymity has been selected with metrics for Risk of Reidentification

The figure above also shows the risk of re-identification metrics – these are shown when the

user previews a solution informing the user of the privacy risk that still remains if that solution

is the one that is chosen.

101093016 - PISTIS - HORIZON-CL4-2022-DATA-01-04

D2.3 - Data Management and Protection services - Beta version Page 115 of 144

Figure 48: Synthetic Data Generator

The figure above shows the data preview for the synthetic data generation option. Synthetic

data can then be generated to replace the original dataset if the user wants to further reduce

any privacy risk.

7.1.9 DEVELOPER DOCUMENTATION

Documentation for developers is available here:

https://docs.pistis-market.eu/developers/anonymiser/anonymiser

7.1.10 SOURCE CODE
Anonymizer is a proprietary tool owned and developed by Assentian. The source code is

managed in a private project code repository11. The deployment branch contains the code

currently deployed on the PISTIS Kubernetes cluster12.

7.2 LINEAGE TRACKER

7.2.1 COMPONENT DESCRIPTION

The Lineage Tracker records every create, update, and delete operation performed on a

dataset, documenting the actor, timestamp, and nature of each change. Each operation is

then translated into RDF according to the W3C PROV-Ontology and persisted in a triple store,

incrementally constructing a comprehensive lineage graph of the dataset’s evolution. Upon

each update, the system computes the diff between successive versions and stores a textual

summary of the modifications made. Additionally, a cryptographic hash of this updated

lineage snapshot is computed and anchored on a blockchain to ensure an immutable,

verifiable audit trail. This comprehensive lineage history grants users full visibility into a

dataset’s evolution as well as access to any prior version.

The Lineage Tracker offers API endpoints for logging create, update, and delete operations on

a dataset; retrieving structured lineage data; and computing diffs between any two dataset

versions. Each incoming operation is serialized into RDF and persisted in a triple store, thereby

incrementally extending the dataset’s lineage graph. Clients may then query the API to obtain

a dataset’s full history, its lineage graph, the complete history of a particular user, or the diff

between two dataset versions.

11 https://github.com/PISTIS-Platform/Anonymiser
12 https://github.com/PISTIS-Platform/Anonymiser/tree/deployment

https://docs.pistis-market.eu/developers/anonymiser/anonymiser
https://github.com/PISTIS-Platform/Anonymiser
https://github.com/PISTIS-Platform/Anonymiser/tree/deployment

101093016 - PISTIS - HORIZON-CL4-2022-DATA-01-04

D2.3 - Data Management and Protection services - Beta version Page 116 of 144

Lastly, the Lineage Tracker provides a user-friendly user interface (UI) with two primary pages.

The Lineage History page displays an interactive lineage tree of all dataset versions alongside

a detailed history table, listing each operation’s timestamp, actor, and operation description.

The Dataset Versions page enables users to select any two dataset versions and review their

differences in a comparison table, detailing all additions, deletions, and modifications.

7.2.2 MAIN IMPROVEMENTS IN BETA VERSION

The major Beta Version improvements include the following:

Version diff: When two dataset versions are selected in the UI Compare Versions page,

the Lineage Tracker computes the diff between them. Any schema and data

differences between the two versions is then displayed in the UI.

Textual update description: When a dataset is updated, the Lineage Tracker detects any

schema changes, data changes, data enrichments, and data transformations made to

the dataset. Notably, the system detects any of the data transformations supported in

the PISTIS Transformations catalogue (datetime harmonization, removing missing

registries, replacing values, replacing missing registries with fixed or various statistical

methods). It then stores a textual description of these changes in RDF and displays it

in the UI.

Cloud Catalogue Lineage Tracker: When a Data Owner places a dataset up for sale, the

dataset’s lineage information is transferred to the cloud triple store, and can be viewed

in the cloud Lineage Tracker UI. The cloud Lineage Information page displays the same

information as the factory Lineage Information Page; however, the cloud Dataset

Versions page only displays a sample of dataset changes when a user clicks on two

dataset versions.

Blockchain anchoring: Whenever a dataset is created, updated, or deleted, a

cryptographic hash is computed of the dataset’s lineage information, and stored on

the Blockchain component. This ensures the lineage information is not tampered with,

as its hash can easily be verified on the Blockchain.

Enhanced user interface: The Lineage Tracker UI user interface was improved, particularly

the styling with regards to the dataset’s family tree, information table, and dataset

comparison table.

Dataset anonymization support: The Lineage Tracker was updated to allow for

anonymized datasets. When a dataset is anonymized, the visibility of its predecessor

datasets is updated so that cloud catalogue users cannot view pre-anonymized dataset

differences when comparing dataset versions.

101093016 - PISTIS - HORIZON-CL4-2022-DATA-01-04

D2.3 - Data Management and Protection services - Beta version Page 117 of 144

7.2.3 COMPONENT BACKLOG
This section provides the full set of features that belong to the backlog of the component.

ID #

Use Case
Backlog
Priority

Acceptance
Criteria

Status

WP1
User

Stories As a <Role>
I want to
<Action>,

so that <Reason>

UC_01

Data
Consumer/
Data
Provider

Explore the
version
history of a
dataset.

I get an overview of
the operations
performed on it/I can
see how my dataset
performs (is being
used).

Alpha
(Backend)
Beta (UI)

Data Consumer
can view all
versions of a
dataset and all
CRUD
operations
performed on
it.

Done

PISTIS.
OUS.

07

UC_02
Data
Provider

Access
previous
version(s) of
a dataset.

I can use the specific
version, which suits
my needs for further
purposes.

Alpha
(Backend)
Beta (UI)

Data Provider
can access all
versions of a
dataset.

Done

PISTIS.
OUS.

08

UC_03
Data
Consumer

Verify who
is
modifying
my dataset.

I have visibility over
who is modifying my
data.

Alpha
(Backend)
Beta (UI)

Data Provider
can view all
Data Consumer
accessing
dataset.

Done

PISTIS.
OUS.

08

7.2.4 FUNCTIONAL REQUIREMENTS
This section provides the functional requirements of the component.

ID Description
Related Use

Cases
Comments

FR_01 Document (via API) and on request provide (via API and UI)
the information that a new dataset was checked in.

PISTIS.OUS.01

FR_02 Document (via API) and on request provide (via API and UI)
the information that a dataset was modified.

PISTIS.OUS.03

FR_03 Provide data lineage information to contribute to the
quality assessment of a dataset.

PISTIS.OUS.04

FR_04 Provide data lineage information to the data valuation
service (via API).

PISTIS.OUS.07

FR_05 Provide data lineage information to the analytics engine
(via API).

PISTIS.OUS.08

7.2.5 NON-FUNCTIONAL REQUIREMENTS
The following table presents the non-functional requirements of the component (if any).

Requirement
Sub-category

Id Description (Detailed description of the requirement)

Functional
Suitability

NFR1
The Lineage Tracker adheres to all functional requirements.

Performance
efficiency

NFR2
The Lineage Tracker stores and retrieves lineage information,
maintaining high throughput and low latency in data processing.

101093016 - PISTIS - HORIZON-CL4-2022-DATA-01-04

D2.3 - Data Management and Protection services - Beta version Page 118 of 144

Compatibility NFR3
The Lineage Tracker can be integrated with any PISTIS components that
need to access the operation documentation and information retrieval
API endpoints.

Usability NFR4
The Lineage Tracker allows users to view lineage information in an
intuitive, user-friendly user interface.

Reliability NFR5
The Lineage Tracker guarantees all API endpoints are available with
minimal downtime. Proper error messages are provided with all failed
requests.

Security

NFR6

The Lineage Tracker guarantees only the Factory Data Storage can access
Operation Documentation API endpoints and only authorized users can
access Information Retrieval API endpoints.

Portability
NFR7 The Lineage Tracker is containerized and can be deployed across different

operating systems and environments.

7.2.6 COMPONENT ARCHITECTURE
Per Figure 57 below, the Lineage Tracker consists of the User Interface, API, and Backend.

The User Interface (UI) is used to visualize the lineage information using Vue.js and Pinia for

frontend state management. When a user wants to view a dataset’s lineage information, they

can navigate to a dataset’s lineage page, which in turn requests the dataset’s lineage data

from the API. Similarly, when a user wants to compare two dataset versions, they can click on

two datasets in the family tree, which in turn requests dataset diff data from the API. The

Vue.js UI then displays this information in the form of a dataset family tree and tables.

The Flask REST API serves as the interface to both document dataset lineage events and to

subsequently retrieve this lineage information. The API is divided into two main modules: the

Operation Documentation and Information Retrieval modules. Whenever a dataset is

modified, the Factory Data Storage calls the Operation Documentation module which captures

and records dataset changes. The UI can then call the Information Retrieval module to retrieve

a dataset’s lineage information for visualization purposes.

The Backend consists of a Virtuoso Triplestore which is used to store all lineage data in RDF

and an Indexing Service which converts RDF to JSON and vice versa. By leveraging the W3C

Prov-DM, the Virtuoso Triplestore can model complex relationships between users, datasets,

and operations—namely create, update, and delete. The Indexing Service then serves as

middleware between the REST API and Virtuoso Triplestore, using the python-prov library to

convert json data from the Factory Data Storage to RDF that can be stored in the triplestore,

and to convert RDF in the triplestore to JSON that can be used by the UI.

101093016 - PISTIS - HORIZON-CL4-2022-DATA-01-04

D2.3 - Data Management and Protection services - Beta version Page 119 of 144

Figure 57: Lineage Tracker Architecture Diagram

7.2.7 TECHNOLOGY BACKGROUND
The Lineage Tracker consists of a REST API for documenting operations and retrieving lineage

information, a database for storing this lineage information, and a frontend UI for visualizing

it.

The REST API is built in Python using the Flask framework to realize the micro service

architecture and python-prov library for managing lineage data. Flask is a lightweight and

flexible web application framework for Python that allows for the quick development of

extensible and modular REST APIs. Furthermore, python-prov is a Python library

implementation of the W3C PROV-Ontology, allowing for the creation, manipulation, and

export of lineage data according to the W3C PROV Data Model.

When a dataset’s lineage is constructed, the resulting RDF graph is stored in an Openlink

Virtuoso triple store, where it can be updated and queried. An Openlink Virtuoso triple store

is a high-performance database designed to store and manage RDF data. Furthermore, it

101093016 - PISTIS - HORIZON-CL4-2022-DATA-01-04

D2.3 - Data Management and Protection services - Beta version Page 120 of 144

supports SPARQL queries for accessing data, making it suitable for storing and retrieving

complex lineage information.

Lastly, the frontend UI is realized using Vue.js, an open-source JavaScript framework used for

building user interfaces in single-page applications. In addition, the frontend employs Pinia for

state management and Bootstrap for responsive CSS styling.

7.2.8 GRAPHICAL USER INTERFACE
The screenshot below presents a dataset’s lineage: on the left, a graph illustrates its family

tree; on the right, a table presents more detailed lineage information.

Figure 58: View Dataset Lineage

The screenshot below compares two datasets: on the left, a graph illustrates their family tree;

on the right, a table highlights their differences.

101093016 - PISTIS - HORIZON-CL4-2022-DATA-01-04

D2.3 - Data Management and Protection services - Beta version Page 121 of 144

Figure 59: View Dataset Version Changes

7.2.9 DEVELOPER DOCUMENTATION
Documentation and guides are available at https://docs.pistis-market.eu/developers/lineage-

tracker/introduction, which provides support for implementation and integration with other

components.

7.2.10 SOURCE CODE
Lineage Tracker has a frontend module built in Vue.js and a backend module built in Python.

The source code of these modules is available in the PISTIS GitHub under this repo:

https://github.com/PISTIS-Platform/lineage-tracker . The user interface of lineage tracker can

be triggered from a dataset page in the Factory Catalogue UI and the Swagger UI of the

backend is available here: https://develop.pistis-market.eu/srv/lineage-tracker

7.3 GDPR CHECKER

7.3.1 COMPONENT DESCRIPTION

 The GDPR Checker is invoked automatically whenever a dataset is uploaded to the PISTIS

platform. It employs ontologies—machine-readable documents in OWL/ODRL format—that

https://docs.pistis-market.eu/developers/lineage-tracker/introduction
https://docs.pistis-market.eu/developers/lineage-tracker/introduction
https://github.com/PISTIS-Platform/lineage-tracker
https://develop.pistis-market.eu/srv/lineage-tracker

101093016 - PISTIS - HORIZON-CL4-2022-DATA-01-04

D2.3 - Data Management and Protection services - Beta version Page 122 of 144

define GDPR concepts (for example, “personal data” and “sensitive data”). Each column within

the dataset is annotated with a label (for instance, “email” or “medical_record”). Upon

submission of a dataset, the GDPR Checker retrieves and loads the relevant ontology files,

which specify the applicable GDPR rules.

Subsequently, it conducts a comparison between the dataset’s labels and the definitions

contained in these ontologies. For example, if a column labelled “email” is found alongside

one labelled “health_diagnosis,” the Checker, by virtue of the ontology relationships,

recognizes that linking those two fields may contravene anonymity requirements. In such

circumstances, the GDPR Checker generates a warning—such as “Email addresses combined

with health information may constitute an anonymity breach”—and provides a clear

recommendation, for example, “Apply anonymisation to the ‘email’ column using the

Anonymizer” or “Remove ‘health_diagnosis’ if it is not strictly necessary.”

Finally, the component produces a concise report indicating either “No issues found” or

“Possible GDPR concerns,” accompanied by an itemized list of warnings and corresponding

mitigation suggestions. This report is forwarded to the PISTIS user interface so that users can

immediately identify and address any potential risks before the data proceeds downstream.

By leveraging ontologies and formalized rules, the GDPR Checker Beta functions as an early

warning system that notifies users of potential GDPR issues without issuing a definitive legal

compliance certificate.

7.3.2 MAIN IMPROVEMENTS IN BETA VERSION

Below is a brief overview of the principal enhancements introduced in the Beta version of the

GDPR Checker:

1. Ontology‐Based Evaluation: Replaces the simple rule‐based engine with machine‐readable

OWL/ODRL ontologies that formally define GDPR concepts (e.g., “personal data,” “sensitive

data,” “anonymity”).

2. Dynamic Rule Loading: Ontologies and GDPR rules are loaded at runtime, allowing easier

updates and extensibility compared to hardcoded rule sets.

3. Advisory Output Model: Instead of generating a binary “compliant/not‐compliant”

certificate, the Beta Checker issues targeted warnings and mitigation suggestions (e.g., “apply

anonymisation to ‘email’,” “remove ‘health_diagnosis’”).

4. Fine‐Grained Privacy Profile Comparison: Directly compares dataset labels against

ontology relationships, enabling detection of specific conflicts (such as linking email with

health data) rather than relying on broad rule combinations.

101093016 - PISTIS - HORIZON-CL4-2022-DATA-01-04

D2.3 - Data Management and Protection services - Beta version Page 123 of 144

5. Early‐Warning Integration: Runs automatically when a dataset is uploaded and feeds its

report to the PISTIS UI, ensuring that potential GDPR issues are flagged before any

downstream processing.

6. Improved Extensibility: Partners and legal teams can supply or update ontology files

without modifying core code, supporting evolving legal requirements.

7. Streamlined Workflow: Eliminates the previous step of generating smart contracts for

certification, focusing instead on immediate, actionable feedback.

7.3.3 COMPONENT BACKLOG
This section provides the full set of features that belong to the backlog of the component.

ID #

Use Case
Backlog
Priority

Acceptance
Criteria

Status WP1
User
Stories As a <Role> I want to <Action>,

so that
<Reason>

US_01 Data Provider

know whether my
data/dataset comply
with the GDPR
regulation
(according to
generic rules

make the
necessary
actions (e.g.,
anonymisation
s)

Alpha
GDPR
compliance
report

Done PISTIS.
OUS.4
&
PISTIS.
OUS.7

US_02 Data Consumer

rest assured that the
data I acquired are
GDPR compliant
(according to
generic rules)

no legal issues
occur

Alpha
GDPR
compliance
report

Done PISTIS.
OUS.4
&
PISTIS.
OUS.7

US_03 Data Provider

know whether my
data/dataset comply
with the GDPR
regulation
(according to limited
GDPR articles)

make the
necessary
actions (e.g.,
anonymisation
s)

Beta GDPR report

Done PISTIS.
OUS.4
&
PISTIS.
OUS.7

US_04 Data Consumer

rest assured that the
data I acquired have
no GDPR warnings
(according to limited
GDPR articles)

no legal issues
occur

Beta GDPR report

Done PISTIS.
OUS.4
&
PISTIS.
OUS.7

7.3.4 FUNCTIONAL REQUIREMENTS
This section provides the functional requirements of the component.

ID Description
Related Use

Cases
Comments

FR_01 GDPR compliance check process
for a specified dataset.

UC_1, UC_2 This compliance report will be
considered in the Data Valuation
process.

FR_02 Possible GDPR warnings and
recommendations are stored in
the Public Ledger as a proof of

UC_1, UC_2 Other PISTIS components can check
the dataset’s GDPR status.

101093016 - PISTIS - HORIZON-CL4-2022-DATA-01-04

D2.3 - Data Management and Protection services - Beta version Page 124 of 144

compliance.

FR_03 If dataset is not GDPR compliant
potential mitigation measures in
the form of suggestions will be
provided to the user.

UC_1, UC_2 The user will be notified with
potential GDPR warnings in order to
take action.

7.3.5 NON-FUNCTIONAL REQUIREMENTS
The following table presents the non-functional requirements of the component (if any).

Requirement
Sub-category

Id Description (Detailed description of the requirement)

Performance
efficiency

NFR1
GDPR compliance check should be performed in efficient way.

Usability NFR2
Authorized entities should easily check GDPR compliance through the
Public Ledger stored certificate.

Reliability NFR3
Compliance results should be reliable and displayed only to authorised
entities.

Security
NFR4 Only authorized entities should check GDPR report and it should be

stored in a way this could not be altered.

7.3.6 COMPONENT ARCHITECTURE

The GDPR Checker verifies GDPR compliance through a clear process. It first identifies sensitive

data and relevant privacy policies in the dataset using two dedicated modules. These results

feed into the GDPR Check module, which evaluates if the dataset meets standards of the

applied rules. The component then outputs potential GDPR Warnings and recommendations

for the user to take action.

Figure 60: GDPR Checker High Level Architecture

101093016 - PISTIS - HORIZON-CL4-2022-DATA-01-04

D2.3 - Data Management and Protection services - Beta version Page 125 of 144

7.3.7 TECHNOLOGY BACKGROUND

The GDPR Checker is implemented in Node.js with TypeScript and loads OWL/ODRL ontology

files at runtime to represent GDPR concepts like data categories and privacy properties. When

triggered via a REST endpoint, it receives an asset ID, retrieves the associated dataset, and

uses a lightweight semantic reasoner to compare column labels against the ontologies. If it

finds potential conflicts with the GDPR rules, it generates warnings and mitigation suggestions.

By combining Node.js/TypeScript with semantic web libraries, the GDPR Checker remains

scalable, extensible, and seamlessly integrated into the PISTIS platform.

7.3.8 GRAPHICAL USER INTERFACE
The component doesn’t have a GUI.

7.3.9 DEVELOPER DOCUMENTATION

The developer documentation for the GDPR Checker component may be accessed on the

official PISTIS project documentation site at the following link: https://docs.pistis-

market.eu/developers/gdpr-checker/gdpr-checker

7.3.10 SOURCE CODE
The source code of the GDPR Checker component is maintained in a private GitHub repository

under the PISTIS project, accessible only to the PISTIS consortium and the reviewers:

https://github.com/PISTIS-Platform/besu_ledger-scee-scc-gdpr-checker/tree/main/node-

server/src/checkers/GDPRChecker

While the GDPR Checker is conceptually distinct, it is technically integrated within the same

Node.js server as the Smart Contract Execution Engine (SCEE) and the Smart Contract Checker,

all hosted in the same repository. Additionally, the repository includes the Data Ledger

implementation, developed using the Hyperledger Besu Quorum framework, providing a

unified solution for these interconnected components. The attached link leads to the GDPR

Checker's implementation logic within this comprehensive repository.

https://github.com/PISTIS-Platform/besu_ledger-scee-scc-gdpr-checker/tree/main/node-server/src/checkers/GDPRChecker
https://github.com/PISTIS-Platform/besu_ledger-scee-scc-gdpr-checker/tree/main/node-server/src/checkers/GDPRChecker

101093016 - PISTIS - HORIZON-CL4-2022-DATA-01-04

D2.3 - Data Management and Protection services - Beta version Page 126 of 144

7.4 SEARCHABLE ENCRYPTION

7.4.1 COMPONENT DESCRIPTION

The Searchable Encryption component is designed to provide secure and privacy-preserving

search capabilities within the PISTIS platform. It enables authorized users to perform searches

over encrypted data without exposing the actual data content but only to authenticated

buyers featuring the necessary set of attributes (e.g. a buyer who has the necessary tokens in

their wallet or a buyer who has signed a contract for this type of data).

This component supports two main types of queries: 1) queries over metadata (keywords)

associated to encrypted pointers that interpoint to the encrypted datasets (metadata based

Searchable Encryption) and 2) more granular queries over specific data fields (rows, columns)

comprising tabular datasets. The latter also leverages metadata based Searchable Encryption

capabilities, where metadata are keywords associated to the data fields of interest. The

metadata queries allow efficient filtering and discovery of relevant datasets, while the second

modality enables more granular, content-based searches within encrypted datasets using

advanced cryptographic techniques.

By combining these two querying methods, the Searchable Encryption component balances

usability and security, allowing users to find and access data assets they are authorized for

without compromising data privacy. The component integrates with PISTIS identity and access

management systems to ensure that only authenticated and authorized users can perform

searches, maintaining strict control over data access.

7.4.2 MAIN IMPROVEMENTS IN BETA VERSION
The Searchable Encryption component is introduced for the first time in the Beta version of

the PISTIS platform. It provides a novel capability to perform secure, privacy-preserving

searches over encrypted datasets and their metadata.

7.4.3 COMPONENT BACKLOG
This section provides the full set of features that belong to the backlog of the component.

ID #

Use Case
Backlog
Priority

Acceptance
Criteria

Status WP1 User
Stories

As a <Role> I want to <Action>,
so that
<Reason>

US_01
Data
Consumer

search datasets based
on specific keywords

I can buy
them

Beta
Search
results

Done PISTIS.OUS.9

US_02
Data
Provider

hide actual type of
data

I can protect
my privacy

 Beta
Search
results

Done PISTIS.OUS.9

US_03
Data
provider

only users with
specific attributes to
search my data

I can protect
my privacy

 Beta
Search
results

Done PISTIS.OUS.9

US_04
Data
Provider

to dynamically update
the encrypted
keyword

the keyword
to be more
accurate upon

 Beta
Search
results

Done PISTIS.OUS.9

101093016 - PISTIS - HORIZON-CL4-2022-DATA-01-04

D2.3 - Data Management and Protection services - Beta version Page 127 of 144

changes

US_05
PISTIS
Administrat
or

be sure that only
authorised PISTIS user
can search and buy
datasets

confidentiality
and
authenticatio
n
requirements
are met

 Beta
Search
results

Done PISTIS.OUS.9
&
PISTIS.SOUS.0
1

US_06
PISTIS
Administrat
or

be sure that a
reasonable number of
queries per user will
be done

the PISTIS
platform to
be efficient

 Beta
Search
results

Done PISTIS.OUS.9
&
PISTIS.SOUS.0
1

7.4.4 FUNCTIONAL REQUIREMENTS
This section provides the functional requirements of the component.

ID Description
Related Use

Cases
Comments

FR_01 Searchable Encryption supports
encryption with specific attributes
defined by the Data Provider.

UC_3, UC_4, UC_5 These attributes are
part of the verifiable
credentials of Data
Consumers.

FR_02 Searchable Encryption supports
search upon encrypted data with
specific attributes defined by the Data
Provider.

UC_1, UC_2, UC_5 These attributes are
part of the verifiable
credentials of Data
Consumers.

7.4.5 NON-FUNCTIONAL REQUIREMENTS
The following table presents the non-functional requirements of the component (if any).

Requirement
Sub-category

Id Description (Detailed description of the requirement)

Functional
Suitability

NFR1 All entities with the specified attributes will be in position to decrypt the
corresponding encrypted data (e.g., index).

Performance
efficiency

NFR2 Encryption/decryption and search functionalities should be performed in
efficient way.

Compatibility
NFR3 All entities with the specified attributes will be in position to decrypt the

corresponding encrypted data (e.g., index).

Usability NFR4
Authorized entities should easily search encrypted data indexes through
the PISTIS platform.

Reliability NFR5
Search results should be reliable and displayed only to authorised
entities.

Security
NFR6 Data confidentiality and privacy of data provider and data consumer

should be supported.

7.4.6 COMPONENT ARCHITECTURE
Figure 61 below presents the high-level architecture of the Searchable Encryption including

the internal components of the tool. Such a component represents a significant advancement

in secure data handling. It exemplifies how modern encryption techniques can be harmonized

101093016 - PISTIS - HORIZON-CL4-2022-DATA-01-04

D2.3 - Data Management and Protection services - Beta version Page 128 of 144

with emerging technologies like blockchain to create a secure, transparent, and efficient data

management system. This component is pivotal in enabling the PISTIS platform to handle

sensitive data with the utmost security while ensuring that the data remains accessible and

useful for authorized users.

Figure 61: Searchable Encryption high-level Architecture

7.4.7 TECHNOLOGY BACKGROUND
The Searchable Encryption component is designed around the concept of Dynamic Symmetric

Searchable Encryption (DSSE), a system that allows for the searching of encrypted data

quickly and efficiently. DSSE is crucial for maintaining privacy while ensuring that data retrieval

processes are swift and effective, especially important when dealing with large volumes of

data stored in cloud environments.

This component is implemented using Node.js and the implementation also involves the use

of cryptographic libraries and APIs that support the operations of DSSE. These libraries ensure

the secure handling of encryption keys and the execution of encryption algorithms,

maintaining data confidentiality while enabling the search functionality. The use of these

technologies ensures that the Searchable Encryption component can securely manage, index,

and retrieve encrypted data without exposing sensitive information.

7.4.8 GRAPHICAL USER INTERFACE
As this component is a backend component, no UI is provided.

101093016 - PISTIS - HORIZON-CL4-2022-DATA-01-04

D2.3 - Data Management and Protection services - Beta version Page 129 of 144

7.4.9 DEVELOPER DOCUMENTATION

The developer documentation for the Searchable Encryption component may be accessed on

the official PISTIS project documentation site at the following link:

https://docs.pistis-market.eu/developers/searchable-encryption/searchable-encryption

7.4.10 SOURCE CODE
The source code of the Searchable Encryption component is maintained in a private GitHub

repository under the PISTIS project, accessible only to the PISTIS consortium and the reviewers

at https://github.com/PISTIS-Platform/searchable-encryption.

7.5 ENCRYPTION/DECRYPTION ENGINE

7.5.1 COMPONENT DESCRIPTION

The Encryption/Decryption Engine in the PISTIS platform is a flexible and essential component

that manages data encryption and decryption across the system. It supports common

encryption methods to protect data privacy and security.

In the current design, the actual encryption and decryption operations are performed by the

OpenDSU client deployed within each factory. Meanwhile, a separate Flask-based server

handles the exchange of encryption keys and coordinates key management. Although these

parts are technically separate, they function together as a single logical component to ensure

secure data handling.

Additionally, the encryption keys used are linked to the user’s Self-Sovereign Identity (SSI),

reinforcing user control and trust in the data protection process.

This architecture allows for strong security while supporting distributed and factory-specific

encryption needs across the platform.

7.5.2 MAIN IMPROVEMENTS IN BETA VERSION
In the Beta version, the Encryption/Decryption Engine introduces significant enhancements

focused on improving security and modularity. The core encryption and decryption processes

have been moved to the OpenDSU client running within each factory, enabling more localized

and secure data handling. This change reduces the risk of key exposure and improves

performance by decentralizing cryptographic operations. Additionally, the Flask-based server

now primarily handles the secure exchange and management of encryption keys, allowing for

better separation of concerns and easier maintenance. The integration between the OpenDSU

clients and the key exchange server is streamlined to support the Self-Sovereign Identity (SSI)

https://docs.pistis-market.eu/developers/searchable-encryption/searchable-encryption
https://github.com/PISTIS-Platform/searchable-encryption

101093016 - PISTIS - HORIZON-CL4-2022-DATA-01-04

D2.3 - Data Management and Protection services - Beta version Page 130 of 144

framework, ensuring that encryption keys are securely linked to user identities. These

improvements collectively strengthen the platform’s ability to protect data confidentiality

while supporting flexible and distributed deployments across multiple factories.

7.5.3 COMPONENT BACKLOG
This section provides the full set of features that belong to the backlog of the component.

ID #
Use Case

Backlog
Priority

Acceptance
Criteria

Status WP1
User
Stories As a <Role> I want to <Action>,

so that
<Reason>

US_01 Data Consumer
be able to decrypt
encrypted datasets

I can see the
actual data

Alpha
Decryption
process

Done PISTIS.
OUS.1
0

US_02 Data Provider
be able to encrypt
datasets

I can protect
data
confidentiality

Alpha
Encryption
process

Done PISTIS.
OUS.1
0

US_03 User

make sure that my
encryption keys are
associated with my
Self-Sovereign
Identity

my data
privacy and
control are
ensured.

Beta
Encryption/D
ecryption
Process

Done PISTIS.
OUS.1
0

7.5.4 FUNCTIONAL REQUIREMENTS
This section provides the functional requirements of the component.

ID Description
Related Use

Cases
Comments

FR_01 PISTIS should support data encryption
on data transactions.

UC_1, UC_2 The receiver should
be able to decrypt
the encrypted
transaction.

7.5.5 NON-FUNCTIONAL REQUIREMENTS
The following table presents the non-functional requirements of the component (if any).

Requirement
Sub-category

Id Description (Detailed description of the requirement)

Performance
efficiency

NFR1
Encryption/decryption should be performed in efficient way.

Compatibility NFR2 The data receiver should be able to decrypt the transferred data.

Reliability NFR3 No other parties should be able to decrypt and read the actual data.

Security
NFR4 Only the data receiver should be in position to decrypt the data

transaction for confidentiality purposes.

Portability NFR5 Upon an expired certificate the new one should be used.

101093016 - PISTIS - HORIZON-CL4-2022-DATA-01-04

D2.3 - Data Management and Protection services - Beta version Page 131 of 144

7.5.6 COMPONENT ARCHITECTURE
The Encryption/Decryption Engine is designed to secure and retrieve data by transforming it

to and from an encrypted format, ensuring data privacy and integrity. This process is essential

for protecting sensitive information in various applications. The engine includes two primary

components: the 'Encrypt' module and the 'Decrypt' module. The Encrypt module takes an

unencrypted dataset, often referred to as plaintext, and uses cryptographic algorithms to

convert it into an encrypted form, known as ciphertext. This encrypted data ensures that

sensitive information remains secure during storage or transmission. Conversely, the Decrypt

module performs the reverse operation. It takes the encrypted dataset and applies the

corresponding decryption algorithms to convert it back to its original form, making the data

accessible for authorized use. The entire process is tightly integrated with the Self-Sovereign

Identity (SSI) of the user, which manages the encryption keys, thereby ensuring that only the

user with the correct identity credentials can decrypt the data. This mechanism is pivotal in

maintaining data confidentiality and access control in compliance with privacy regulations.

Figure 62: Encryption/Decryption Engine High Level Architecture

7.5.7 TECHNOLOGY BACKGROUND

The Encryption/Decryption Engine component combines Flask, a lightweight Python web

framework, with high-performance C code to handle its core cryptographic functions. The

encryption and decryption logic is implemented in C to leverage its speed and direct hardware

access, essential for efficient and secure processing of cryptographic operations. Flask serves

101093016 - PISTIS - HORIZON-CL4-2022-DATA-01-04

D2.3 - Data Management and Protection services - Beta version Page 132 of 144

as the interface layer, managing communication and coordination, including key exchange.

The component also integrates with EJBCA, a robust Public Key Infrastructure (PKI) software

that manages digital certificates and public keys. EJBCA supports multiple certificate

authorities and hierarchical CA levels, allowing the engine to maintain a flexible and

comprehensive security framework within a single deployment. In the Beta version, significant

architectural changes have been introduced: the OpenDSU client now performs encryption

and decryption locally within each factory, while the Flask server focuses on secure key

management and exchange. This separation improves security by limiting key exposure and

enhances scalability for distributed factory environments. Together, these technologies create

a strong, modular, and extensible encryption system aligned with Self-Sovereign Identity

principles.

7.5.8 GRAPHICAL USER INTERFACE
As this component is a backend component, no UI is provided.

7.5.9 DEVELOPER DOCUMENTATION

The developer documentation for the Encryption/Decryption Engine component may be

accessed on the official PISTIS project documentation site at the following link:

https://docs.pistis-market.eu/developers/encryption-decryption-engine/encryption-

decryption-engine

7.5.10 SOURCE CODE
The source code of the Encryption/Decryption Engine component is maintained in a private

GitHub repository under the PISTIS project, accessible only to the PISTIS consortium and the

reviewers at https://github.com/PISTIS-Platform/encryption-decryption-engine.

7.6 ACCESS POLICY EDITOR

7.6.1 COMPONENT DESCRIPTION
Access Policy Editor is a component integrated with Keycloak 13 identity and access

management platform within PISTIS and IAM API. The component serves as a centralized tool

allowing PISTIS Data Factory Administrators to define and apply the access policies for the

data to be placed over the PISTIS platform.

The primary goal is to simplify the definition of scope-based policies through an intuitive web-

based UI editor. By doing so, administrators gain the ability to tailor access controls for specific

13 https://www.keycloak.org

https://docs.pistis-market.eu/developers/encryption-decryption-engine/encryption-decryption-engine
https://docs.pistis-market.eu/developers/encryption-decryption-engine/encryption-decryption-engine
https://github.com/PISTIS-Platform/encryption-decryption-engine
https://www.keycloak.org/

101093016 - PISTIS - HORIZON-CL4-2022-DATA-01-04

D2.3 - Data Management and Protection services - Beta version Page 133 of 144

use cases, encompassing user roles, and access to targeted resources within the PISTIS

ecosystem. This functionality ensures that the access policies align with the unique

organizational structure and requirements so as data living in PISTIS platform are findable with

proper access to other organizations.

Access policies generated by the Keycloak-based Access Policy Editor provide a multifaceted

approach to access control. Firstly, they dictate who has the privilege to access distinct PISTIS

Organization resources, ranging from specific features within the PISTIS Platform to exclusive

datasets owned by the organization. Secondly, these policies define the scope or rights

associated with accessible PISTIS Organization resources. This extends beyond conventional

permissions, including Create, Read, Update, Delete, and Admin, to incorporate PISTIS-specific

policies such as Trading, Transformation, Pricing, and more. Additionally, the editor allows

administrators to finely tune access on nested objects or attributes within a specific PISTIS

Organization's resource. For example, an administrator can grant read access to an entire data

stream while restricting update permissions to a specific attribute, providing granular control

over resource accessibility.

Internally, the Access Policy Editor relies on Keycloak's infrastructure. Keycloak employs a

secure and scalable database system to store and retrieve the intricate policies defined by

administrators. This ensures that policy information is organized, quickly accessible, and

securely managed. Furthermore, Keycloak leverages its advanced indexing service to optimize

the efficiency of policy enforcement during runtime. The indexing service plays a pivotal role

in accelerating the retrieval of policies, contributing to the overall responsiveness and

performance of the Access Policy Editor within the PISTIS platform. These internal

components work seamlessly to provide a dynamic, responsive, and secure access control

mechanism tailored to the specific needs of organizations utilizing the Keycloak-based Access

Policy Editor in the PISTIS environment.

Access Policy Editor will provide a web-based GUI to allow PISTIS Organization Admins to

manage their organization access and permissions as well as PISTIS Users to define extra

access policies during a Data Asset Injection and Publication phases.

7.6.2 MAIN IMPROVEMENTS IN BETA VERSION

Improvements in beta version are in two directions. In the first direction, a UI-based

integration with “Job Configurator” has been added (while in alpha version integration has

been accomplished via a REST call, without extra configuration available) and publication

policies with Group (Organization) attributes has been supported.

Additionally, beta version is powered by a standalone version on Access Policy Editor, for

PISTIS Administrator and Org Administrators, allowing them to manage Groups

(Organizations), Users (within a Group/Organization) and finally offering more advanced

policy rules. Finally, user management for Org Administrators is planned to be made available

in Factory frontend platform.

101093016 - PISTIS - HORIZON-CL4-2022-DATA-01-04

D2.3 - Data Management and Protection services - Beta version Page 134 of 144

7.6.3 COMPONENT BACKLOG
This section provides the full set of features that belong to the backlog of the component.

ID #

Use Case
Backlog
Priority

Acceptance
Criteria

Status WP1
User
Stories As a <Role> I want to <Action>,

so that
<Reason>

UC_01
I want to
<Action>, so that <Reason>

Can control
access to the
asset from the
organization
users

Alpha

Access to the
asset is
governed by
the policies
created by
the asset
owner

Done PISTIS.
OUS.0
5

PISTIS.
OUS.0
1

UC_02 Data Provider
Define access
policies on a
published asset

Can control
access to the
asset from
outside users

Alpha

Access to the
asset is
governed by
the policies
created by
the asset
owner

Done PISTIS.
OUS.0
5

PISTIS.
OUS.0
6

UC_03
PISTS
Organization
Admin

Define the roles and
attributes of the
organization users

Can create role
based and
attribute-
based access
control policies

Alpha

User roles
and
attributes
are stored in
the IAM
database

Done PISTIS.
OUS.0
5

UC_04 Data Provider

Create and manage
complex access
control policies on
all organization
assets

Can have fine
grain control
on who and
when can
access a
specific asset

Alpha
(first set

of
supporte

d
policies)/

Beta

A user can
create
arbitrary
access
policies
based on
roles and
attributes of
users/assets/
organizations
. Access
control
policies can
also be time
based and
context
based

Done
(first
batch
of
suppor
ted
policie
s)

PISTIS.
OUS.0
5

UC_05 Data Provider

Define access
control policies
based on a user’s
eIDAS credentials
and attributes

Can control
access to an
asset from
external eIDAS
certified user

Beta

Access to an
asset is
based on the
attributes of
a user’s
eIDAS
credentials

Done PISTIS.
OUS.0
5

UC_06
PISTS
Organization
Admin

Manage own
organization users

Can create and
modify user
accounts

Beta

Users’
account
details are
stored in IAM
database

Done PISTIS.
OUS.0
5

101093016 - PISTIS - HORIZON-CL4-2022-DATA-01-04

D2.3 - Data Management and Protection services - Beta version Page 135 of 144

7.6.4 FUNCTIONAL REQUIREMENTS
This section provides the functional requirements of the component.

ID Description
Related Use

Cases
Comments

FR_01 Allow a PISTIS User (data provider) to create
extra access policies, referring to its
Organization, for a Data Asset during
Injection phase.

PISTIS.OUS.01,
PISTIS.OUS.05

FR_02 Allow a PISTIS User (data provider) to create
extra access policies for a Data Asset during
Publication phase.

PISTIS.OUS.01,
PISTIS.OUS.05

FR_03 Allow PISTIS Organization Administrators to
manage their organization users and assign
roles.

PISTIS.OUS.02

FR_04 Allow PISTIS Organization Administrators to
manage access policies for Data Assets
belonging to users of the organization.

PISTIS.OUS.05

FR_05 Provide list of effective Access Policies of a
PISTIS Asset to be bundled in the Blockchain.

PISTIS.OUS.01 Provided to Asset
Description Bundler and
Data CheckIn during
Injection and Publication
of a Data Asset.

FR_06 Register a new PISTIS Asset with its Access
Policies specific attributes in Keycloak and
create a set of default policies within the
specific Organization.

PISTIS.OUS.01 Provided to Data
CheckIn during Asset
Injection.

FR_07 Register the publication of a PISTIS Asset with
its Access Policies specific attributes in
Keycloak and create a set of default policies
within PISTIS ecosystem.

PISTIS.OUS.01 Provided to Data
CheckIn during Asset
Publication.

FR_08 Register a used-defined access policy for a
PISTIS Asset during asset injection phase.

PISTIS.OUS.01 Provided during Asset
Injection.

FR_09 Register a used-defined access policy for a
PISTIS Asset during Publication phase.

PISTIS.OUS.01 Provided during Asset
Publication.

FR_10 Management of complex access policies,
defined by PISTIS Organization
Administrators via Access Policy Editor web-
based.

PISTIS.OUS.05 Provided to Access Policy
Editor.

7.6.5 NON-FUNCTIONAL REQUIREMENTS
The following table presents the non-functional requirements of the component (if any).

Requirement
Sub-category

Id Description (Detailed description of the requirement)

Functional
Suitability

NFR1
The access policy editor complies with all specified functional
requirements.

Performance
efficiency

NFR2
The defined access policies can be enforced, by the access policy engine,
without introducing long delays to the rest of the operations.

101093016 - PISTIS - HORIZON-CL4-2022-DATA-01-04

D2.3 - Data Management and Protection services - Beta version Page 136 of 144

Compatibility NFR3
The access policy editor REST API service is compatible with all other
components capable of sending REST API requests and processing the
received responses.

Usability NFR4
The definition of the access policies is simplified to the point that an
untrained user can select the correct policies without having software
development experience.

Security NFR5 The access policy editor can be accessed only by authorized users.

Security
NFR6 Definition of access policies for specific assets is done only by users that

belong in the same organization.

7.6.6 COMPONENT ARCHITECTURE
The main elements of Access Policy Editor are:

• The API Adapter will provide the necessary integration layer with IAM API so as execute

complex operations within Keycloak get executed and therefore leverage user’s

experience as well as component’s efficacy. This API mainly servers Access Policy

Editor’s operations and certain operation for factory management.

• An included in the PISTIS UI web-based GUI to allow a PISTIS User (data provider) to

specify extra access policies (restrictions) during a Data Asset Injection or Publication.

• An included in the PISTIS UI web-based GUI to allow a PISTIS Organization

Administrator to manage his organization users.

• A standalone Web-based GUI to provide to the PISTIS Organisation Administrators with

ease management of Users and Policies within their organization.

Figure 63: Access Policy Editor Internal Architecture

101093016 - PISTIS - HORIZON-CL4-2022-DATA-01-04

D2.3 - Data Management and Protection services - Beta version Page 137 of 144

7.6.7 TECHNOLOGY BACKGROUND
PISTIS Access Policy Editor component, is a web-based GUI realized with NuxtJS14 and strongly

relies on developed Identity and Access Management APIs that subsequently rely on Keycloak

APIs. The PISTIS-centric REST API is developed using Java technology and specifically Spring

Boot framework version 3.x.

7.6.8 GRAPHICAL USER INTERFACE
During Data Ingestion a PISTIS User is offered to create exclusion access policies for users that

belong to his organization. This part of Access Policy Editor UI is part of PISTIS Factory UI and

a screenshot is provided in Figure 64. In this figure, the default access policy that is applied

upon asset ingestion is displayed together with the offering functionality of the component.

The default access policy applied during asset ingestion claims that all users belonging to

creator’s PISTIS Organization are able to read and edit this asset.

Figure 64: Listing of access policies during data asset injection phase and definition of new exclusion access
policy for organization’s users

During Data Publication a PISTIS User is offered to create exclusion access policies with several

criteria, as presented below. This part of Access Policy Editor UI is part of PISTIS Factory UI and

relevant screenshots are provided in Figure 65 and Figure 66. In details, the default access

policy that is applied upon asset publication is displayed together with the offering

functionalities of the component. The default access policy applied during asset publication

claims that all users of PISTIS Organization can read and trade this asset. Moreover, the

offered criteria for generation exclusion policies include PISTIS Organizations and their

attributes, namely the type, the origin (country), the domain of activity and the size of a PISTIS

Organization, as illustrated in Figure 66.

14 https://nextjs.org

https://nextjs.org/

101093016 - PISTIS - HORIZON-CL4-2022-DATA-01-04

D2.3 - Data Management and Protection services - Beta version Page 138 of 144

Figure 65: Listing of access policies during data asset publication phase (the default access policy)

Figure 66: Registration of a new access policy during data asset publication phase

Another part of the Access Policy component, also included in the PISTIS UI web-based GUI,

aims to allow a PISTIS Organization Administrator to manage his organization users. Figure 67

and Figure 68 illustrate this functionality.

101093016 - PISTIS - HORIZON-CL4-2022-DATA-01-04

D2.3 - Data Management and Protection services - Beta version Page 139 of 144

Figure 67: Listing of PISTIS users within access policy editor

Figure 68: Create (or edit) a PISTIS user

Finally, Access Policy Editor component offers a standalone web-based GUI version to allow

PISTIS Organization Administrators to manage access policies for the registered (published)

assets. The access policies generated again follow the exclusion logic and address several

criteria, as presented in the following screenshots.

The screenshot below lists all the registered access policies within the access policy editor.

The following attributes of each access policy are shown in the table: the name, the affected

resource, the description, and the type. Each policy can be edited or deleted (under the

"Actions" column). Access policies are shown paginated. Additionally, search functionality is

provided within the list of access policies. Finally, the option to create a new access policy is

available.

101093016 - PISTIS - HORIZON-CL4-2022-DATA-01-04

D2.3 - Data Management and Protection services - Beta version Page 140 of 144

Figure 69: Listing of registered access policies within the access policy editor

The screenshot below shows the creation of a new access policy for a user of an organization.

The registration of such an access policy can be done by both the PISTIS administrator and the

organization's administrator.

Figure 70: Registration of a new access policy within access policy editor based on organization user

The screenshot below shows the creation of a new access policy based on the attributes of a

user's organization, which are: the country, the size, the type, and the domain of the

organization. Such a policy can be added by both the PISTIS administrator and the

organization's administrator.

101093016 - PISTIS - HORIZON-CL4-2022-DATA-01-04

D2.3 - Data Management and Protection services - Beta version Page 141 of 144

Figure 71: Registration of a new access policy within access policy editor based on user’s organization
attributes

The screenshot below shows the creation of a new access policy for an organization. The

registration of such an access policy can only be done by the PISTIS administrator.

Figure 72: Registration of a new access policy within access policy editor based on user’s organization

101093016 - PISTIS - HORIZON-CL4-2022-DATA-01-04

D2.3 - Data Management and Protection services - Beta version Page 142 of 144

The screenshot below shows the creation of a new access policy based on the attributes of an

asset (if it is structured, hidden, tradeable, its format, TLP, etc.). This can only be done by the

PISTIS administrator.

Figure 73: Registration of a new access policy within access policy editor based on data asset’s attributes

The screenshot below shows the registration of a new access policy for a specific time period,

that is adjusted by the PISTIS administrator or an organization's administrator.

Figure 74: Registration of a new access policy within access policy editor based on time period

7.6.9 DEVELOPER DOCUMENTATION
Developer documentation regarding Keycloak integration can be found in

https://docs.pistis-market.eu/developers/keycloak/introduction.

The IAM API Swagger can be found in

https://docs.pistis-market.eu/developers/keycloak/introduction

101093016 - PISTIS - HORIZON-CL4-2022-DATA-01-04

D2.3 - Data Management and Protection services - Beta version Page 143 of 144

https://pistis-market.eu/srv/identity-access-management/api/docs

and can be visualized via

https://pistis-market.eu/srv/identity-access-management/api/docs/swagger-ui/index.html15

7.6.10 SOURCE CODE
The component’s UI that are part of the platform-frontend repository and their code are

maintained in GitHub under the PISTIS project and can be accessed via the respective link:

https://github.com/PISTIS-Platform/platform-frontend

Code for the component’s standalone version is maintained in GitHub under the PISTIS project

and can be accessed via the respective link:

https://github.com/PISTIS-Platform/access-policy-editor

Code for the component’s middleware (API) is maintained in GitHub under the PISTIS project

and can be accessed via the respective link:

https://github.com/PISTIS-Platform/iam/tree/develop

15 Paste in the textbox the link: https://pistis-market.eu/srv/identity-access-management/api/docs

https://pistis-market.eu/srv/identity-access-management/api/docs
https://pistis-market.eu/srv/identity-access-management/api/docs/swagger-ui/index.html
https://github.com/PISTIS-Platform/platform-frontend
https://github.com/PISTIS-Platform/access-policy-editor
https://github.com/PISTIS-Platform/iam/tree/develop

101093016 - PISTIS - HORIZON-CL4-2022-DATA-01-04

D2.3 - Data Management and Protection services - Beta version Page 144 of 144

8 CONCLUSIONS

The document presents the design and development of the Beta release of the PISTIS

components dealing with data discovery, management and protection. It is based on the

Alpha version of the components presented in D2.2 and improved according their

development backlog.

The functionalities of each component have been described and the technologies that have

been exploited for the development of the corresponding alpha releases have been

presented. The user stories for each component have been specified and through them the

functional and non-functional requirements of the different components have been defined.

Moreover, the internal architecture of each component has been provided, showcasing the

interconnections among the subcomponents of each component. For the components that

have a user interface, respective screenshots depicting the components’ functionalities have

been also presented.

The design and development of the Beta releases of the PISTIS components presented in this

document and in D3.3 will drive the integration activities of the project in the next period

towards realizing the delivery of the Beta version of the PISTIS Platform (D4.2). The

components will continue to evolve with updates addressing the issues identified during the

Beta version evaluation of PISTIS in WP5 and will be encapsulated gradually in the following

version 1.0 release of the components and will be documented in the corresponding D2.4

deliverable.

